mirror of
https://github.com/torvalds/linux.git
synced 2024-11-01 13:03:25 +01:00
66e48e491d
ACPI MADT doesn't allow to offline a CPU after it has been woken up. Currently, CPU hotplug is prevented based on the confidential computing attribute which is set for Intel TDX. But TDX is not the only possible user of the wake up method. Any platform that uses ACPI MADT wakeup method cannot offline CPU. Disable CPU offlining on ACPI MADT wakeup enumeration. This has no visible effects for users: currently, TDX guest is the only platform that uses the ACPI MADT wakeup method. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Tao Liu <ltao@redhat.com> Link: https://lore.kernel.org/r/20240614095904.1345461-5-kirill.shutemov@linux.intel.com
242 lines
5.6 KiB
C
242 lines
5.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Confidential Computing Platform Capability checks
|
|
*
|
|
* Copyright (C) 2021 Advanced Micro Devices, Inc.
|
|
* Copyright (C) 2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/string.h>
|
|
#include <linux/random.h>
|
|
|
|
#include <asm/archrandom.h>
|
|
#include <asm/coco.h>
|
|
#include <asm/processor.h>
|
|
|
|
enum cc_vendor cc_vendor __ro_after_init = CC_VENDOR_NONE;
|
|
u64 cc_mask __ro_after_init;
|
|
|
|
static struct cc_attr_flags {
|
|
__u64 host_sev_snp : 1,
|
|
__resv : 63;
|
|
} cc_flags;
|
|
|
|
static bool noinstr intel_cc_platform_has(enum cc_attr attr)
|
|
{
|
|
switch (attr) {
|
|
case CC_ATTR_GUEST_UNROLL_STRING_IO:
|
|
case CC_ATTR_GUEST_MEM_ENCRYPT:
|
|
case CC_ATTR_MEM_ENCRYPT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle the SEV-SNP vTOM case where sme_me_mask is zero, and
|
|
* the other levels of SME/SEV functionality, including C-bit
|
|
* based SEV-SNP, are not enabled.
|
|
*/
|
|
static __maybe_unused __always_inline bool amd_cc_platform_vtom(enum cc_attr attr)
|
|
{
|
|
switch (attr) {
|
|
case CC_ATTR_GUEST_MEM_ENCRYPT:
|
|
case CC_ATTR_MEM_ENCRYPT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SME and SEV are very similar but they are not the same, so there are
|
|
* times that the kernel will need to distinguish between SME and SEV. The
|
|
* cc_platform_has() function is used for this. When a distinction isn't
|
|
* needed, the CC_ATTR_MEM_ENCRYPT attribute can be used.
|
|
*
|
|
* The trampoline code is a good example for this requirement. Before
|
|
* paging is activated, SME will access all memory as decrypted, but SEV
|
|
* will access all memory as encrypted. So, when APs are being brought
|
|
* up under SME the trampoline area cannot be encrypted, whereas under SEV
|
|
* the trampoline area must be encrypted.
|
|
*/
|
|
|
|
static bool noinstr amd_cc_platform_has(enum cc_attr attr)
|
|
{
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
|
|
if (sev_status & MSR_AMD64_SNP_VTOM)
|
|
return amd_cc_platform_vtom(attr);
|
|
|
|
switch (attr) {
|
|
case CC_ATTR_MEM_ENCRYPT:
|
|
return sme_me_mask;
|
|
|
|
case CC_ATTR_HOST_MEM_ENCRYPT:
|
|
return sme_me_mask && !(sev_status & MSR_AMD64_SEV_ENABLED);
|
|
|
|
case CC_ATTR_GUEST_MEM_ENCRYPT:
|
|
return sev_status & MSR_AMD64_SEV_ENABLED;
|
|
|
|
case CC_ATTR_GUEST_STATE_ENCRYPT:
|
|
return sev_status & MSR_AMD64_SEV_ES_ENABLED;
|
|
|
|
/*
|
|
* With SEV, the rep string I/O instructions need to be unrolled
|
|
* but SEV-ES supports them through the #VC handler.
|
|
*/
|
|
case CC_ATTR_GUEST_UNROLL_STRING_IO:
|
|
return (sev_status & MSR_AMD64_SEV_ENABLED) &&
|
|
!(sev_status & MSR_AMD64_SEV_ES_ENABLED);
|
|
|
|
case CC_ATTR_GUEST_SEV_SNP:
|
|
return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
|
|
|
|
case CC_ATTR_HOST_SEV_SNP:
|
|
return cc_flags.host_sev_snp;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool noinstr cc_platform_has(enum cc_attr attr)
|
|
{
|
|
switch (cc_vendor) {
|
|
case CC_VENDOR_AMD:
|
|
return amd_cc_platform_has(attr);
|
|
case CC_VENDOR_INTEL:
|
|
return intel_cc_platform_has(attr);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(cc_platform_has);
|
|
|
|
u64 cc_mkenc(u64 val)
|
|
{
|
|
/*
|
|
* Both AMD and Intel use a bit in the page table to indicate
|
|
* encryption status of the page.
|
|
*
|
|
* - for AMD, bit *set* means the page is encrypted
|
|
* - for AMD with vTOM and for Intel, *clear* means encrypted
|
|
*/
|
|
switch (cc_vendor) {
|
|
case CC_VENDOR_AMD:
|
|
if (sev_status & MSR_AMD64_SNP_VTOM)
|
|
return val & ~cc_mask;
|
|
else
|
|
return val | cc_mask;
|
|
case CC_VENDOR_INTEL:
|
|
return val & ~cc_mask;
|
|
default:
|
|
return val;
|
|
}
|
|
}
|
|
|
|
u64 cc_mkdec(u64 val)
|
|
{
|
|
/* See comment in cc_mkenc() */
|
|
switch (cc_vendor) {
|
|
case CC_VENDOR_AMD:
|
|
if (sev_status & MSR_AMD64_SNP_VTOM)
|
|
return val | cc_mask;
|
|
else
|
|
return val & ~cc_mask;
|
|
case CC_VENDOR_INTEL:
|
|
return val | cc_mask;
|
|
default:
|
|
return val;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(cc_mkdec);
|
|
|
|
static void amd_cc_platform_clear(enum cc_attr attr)
|
|
{
|
|
switch (attr) {
|
|
case CC_ATTR_HOST_SEV_SNP:
|
|
cc_flags.host_sev_snp = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void cc_platform_clear(enum cc_attr attr)
|
|
{
|
|
switch (cc_vendor) {
|
|
case CC_VENDOR_AMD:
|
|
amd_cc_platform_clear(attr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void amd_cc_platform_set(enum cc_attr attr)
|
|
{
|
|
switch (attr) {
|
|
case CC_ATTR_HOST_SEV_SNP:
|
|
cc_flags.host_sev_snp = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void cc_platform_set(enum cc_attr attr)
|
|
{
|
|
switch (cc_vendor) {
|
|
case CC_VENDOR_AMD:
|
|
amd_cc_platform_set(attr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
__init void cc_random_init(void)
|
|
{
|
|
/*
|
|
* The seed is 32 bytes (in units of longs), which is 256 bits, which
|
|
* is the security level that the RNG is targeting.
|
|
*/
|
|
unsigned long rng_seed[32 / sizeof(long)];
|
|
size_t i, longs;
|
|
|
|
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/*
|
|
* Since the CoCo threat model includes the host, the only reliable
|
|
* source of entropy that can be neither observed nor manipulated is
|
|
* RDRAND. Usually, RDRAND failure is considered tolerable, but since
|
|
* CoCo guests have no other unobservable source of entropy, it's
|
|
* important to at least ensure the RNG gets some initial random seeds.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(rng_seed); i += longs) {
|
|
longs = arch_get_random_longs(&rng_seed[i], ARRAY_SIZE(rng_seed) - i);
|
|
|
|
/*
|
|
* A zero return value means that the guest doesn't have RDRAND
|
|
* or the CPU is physically broken, and in both cases that
|
|
* means most crypto inside of the CoCo instance will be
|
|
* broken, defeating the purpose of CoCo in the first place. So
|
|
* just panic here because it's absolutely unsafe to continue
|
|
* executing.
|
|
*/
|
|
if (longs == 0)
|
|
panic("RDRAND is defective.");
|
|
}
|
|
add_device_randomness(rng_seed, sizeof(rng_seed));
|
|
memzero_explicit(rng_seed, sizeof(rng_seed));
|
|
}
|