mirror of
https://github.com/torvalds/linux.git
synced 2024-11-01 13:03:25 +01:00
396799eb5b
Just use the request_queue from the gendisk pointer in the relatively few places that sill need it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed--by: Song Liu <song@kernel.org> Tested-by: Song Liu <song@kernel.org> Signed-off-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/r/20240303140150.5435-11-hch@lst.de
1522 lines
42 KiB
C
1522 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Partial Parity Log for closing the RAID5 write hole
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/async_tx.h>
|
|
#include <linux/raid/md_p.h>
|
|
#include "md.h"
|
|
#include "raid5.h"
|
|
#include "raid5-log.h"
|
|
|
|
/*
|
|
* PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
|
|
* partial parity data. The header contains an array of entries
|
|
* (struct ppl_header_entry) which describe the logged write requests.
|
|
* Partial parity for the entries comes after the header, written in the same
|
|
* sequence as the entries:
|
|
*
|
|
* Header
|
|
* entry0
|
|
* ...
|
|
* entryN
|
|
* PP data
|
|
* PP for entry0
|
|
* ...
|
|
* PP for entryN
|
|
*
|
|
* An entry describes one or more consecutive stripe_heads, up to a full
|
|
* stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
|
|
* number of stripe_heads in the entry and n is the number of modified data
|
|
* disks. Every stripe_head in the entry must write to the same data disks.
|
|
* An example of a valid case described by a single entry (writes to the first
|
|
* stripe of a 4 disk array, 16k chunk size):
|
|
*
|
|
* sh->sector dd0 dd1 dd2 ppl
|
|
* +-----+-----+-----+
|
|
* 0 | --- | --- | --- | +----+
|
|
* 8 | -W- | -W- | --- | | pp | data_sector = 8
|
|
* 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k
|
|
* 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k
|
|
* +-----+-----+-----+ +----+
|
|
*
|
|
* data_sector is the first raid sector of the modified data, data_size is the
|
|
* total size of modified data and pp_size is the size of partial parity for
|
|
* this entry. Entries for full stripe writes contain no partial parity
|
|
* (pp_size = 0), they only mark the stripes for which parity should be
|
|
* recalculated after an unclean shutdown. Every entry holds a checksum of its
|
|
* partial parity, the header also has a checksum of the header itself.
|
|
*
|
|
* A write request is always logged to the PPL instance stored on the parity
|
|
* disk of the corresponding stripe. For each member disk there is one ppl_log
|
|
* used to handle logging for this disk, independently from others. They are
|
|
* grouped in child_logs array in struct ppl_conf, which is assigned to
|
|
* r5conf->log_private.
|
|
*
|
|
* ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
|
|
* PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
|
|
* can be appended to the last entry if it meets the conditions for a valid
|
|
* entry described above, otherwise a new entry is added. Checksums of entries
|
|
* are calculated incrementally as stripes containing partial parity are being
|
|
* added. ppl_submit_iounit() calculates the checksum of the header and submits
|
|
* a bio containing the header page and partial parity pages (sh->ppl_page) for
|
|
* all stripes of the io_unit. When the PPL write completes, the stripes
|
|
* associated with the io_unit are released and raid5d starts writing their data
|
|
* and parity. When all stripes are written, the io_unit is freed and the next
|
|
* can be submitted.
|
|
*
|
|
* An io_unit is used to gather stripes until it is submitted or becomes full
|
|
* (if the maximum number of entries or size of PPL is reached). Another io_unit
|
|
* can't be submitted until the previous has completed (PPL and stripe
|
|
* data+parity is written). The log->io_list tracks all io_units of a log
|
|
* (for a single member disk). New io_units are added to the end of the list
|
|
* and the first io_unit is submitted, if it is not submitted already.
|
|
* The current io_unit accepting new stripes is always at the end of the list.
|
|
*
|
|
* If write-back cache is enabled for any of the disks in the array, its data
|
|
* must be flushed before next io_unit is submitted.
|
|
*/
|
|
|
|
#define PPL_SPACE_SIZE (128 * 1024)
|
|
|
|
struct ppl_conf {
|
|
struct mddev *mddev;
|
|
|
|
/* array of child logs, one for each raid disk */
|
|
struct ppl_log *child_logs;
|
|
int count;
|
|
|
|
int block_size; /* the logical block size used for data_sector
|
|
* in ppl_header_entry */
|
|
u32 signature; /* raid array identifier */
|
|
atomic64_t seq; /* current log write sequence number */
|
|
|
|
struct kmem_cache *io_kc;
|
|
mempool_t io_pool;
|
|
struct bio_set bs;
|
|
struct bio_set flush_bs;
|
|
|
|
/* used only for recovery */
|
|
int recovered_entries;
|
|
int mismatch_count;
|
|
|
|
/* stripes to retry if failed to allocate io_unit */
|
|
struct list_head no_mem_stripes;
|
|
spinlock_t no_mem_stripes_lock;
|
|
|
|
unsigned short write_hint;
|
|
};
|
|
|
|
struct ppl_log {
|
|
struct ppl_conf *ppl_conf; /* shared between all log instances */
|
|
|
|
struct md_rdev *rdev; /* array member disk associated with
|
|
* this log instance */
|
|
struct mutex io_mutex;
|
|
struct ppl_io_unit *current_io; /* current io_unit accepting new data
|
|
* always at the end of io_list */
|
|
spinlock_t io_list_lock;
|
|
struct list_head io_list; /* all io_units of this log */
|
|
|
|
sector_t next_io_sector;
|
|
unsigned int entry_space;
|
|
bool use_multippl;
|
|
bool wb_cache_on;
|
|
unsigned long disk_flush_bitmap;
|
|
};
|
|
|
|
#define PPL_IO_INLINE_BVECS 32
|
|
|
|
struct ppl_io_unit {
|
|
struct ppl_log *log;
|
|
|
|
struct page *header_page; /* for ppl_header */
|
|
|
|
unsigned int entries_count; /* number of entries in ppl_header */
|
|
unsigned int pp_size; /* total size current of partial parity */
|
|
|
|
u64 seq; /* sequence number of this log write */
|
|
struct list_head log_sibling; /* log->io_list */
|
|
|
|
struct list_head stripe_list; /* stripes added to the io_unit */
|
|
atomic_t pending_stripes; /* how many stripes not written to raid */
|
|
atomic_t pending_flushes; /* how many disk flushes are in progress */
|
|
|
|
bool submitted; /* true if write to log started */
|
|
|
|
/* inline bio and its biovec for submitting the iounit */
|
|
struct bio bio;
|
|
struct bio_vec biovec[PPL_IO_INLINE_BVECS];
|
|
};
|
|
|
|
struct dma_async_tx_descriptor *
|
|
ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
|
|
struct dma_async_tx_descriptor *tx)
|
|
{
|
|
int disks = sh->disks;
|
|
struct page **srcs = percpu->scribble;
|
|
int count = 0, pd_idx = sh->pd_idx, i;
|
|
struct async_submit_ctl submit;
|
|
|
|
pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
|
|
|
|
/*
|
|
* Partial parity is the XOR of stripe data chunks that are not changed
|
|
* during the write request. Depending on available data
|
|
* (read-modify-write vs. reconstruct-write case) we calculate it
|
|
* differently.
|
|
*/
|
|
if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
|
|
/*
|
|
* rmw: xor old data and parity from updated disks
|
|
* This is calculated earlier by ops_run_prexor5() so just copy
|
|
* the parity dev page.
|
|
*/
|
|
srcs[count++] = sh->dev[pd_idx].page;
|
|
} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
|
|
/* rcw: xor data from all not updated disks */
|
|
for (i = disks; i--;) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
if (test_bit(R5_UPTODATE, &dev->flags))
|
|
srcs[count++] = dev->page;
|
|
}
|
|
} else {
|
|
return tx;
|
|
}
|
|
|
|
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
|
|
NULL, sh, (void *) (srcs + sh->disks + 2));
|
|
|
|
if (count == 1)
|
|
tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
|
|
&submit);
|
|
else
|
|
tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
|
|
&submit);
|
|
|
|
return tx;
|
|
}
|
|
|
|
static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
struct kmem_cache *kc = pool_data;
|
|
struct ppl_io_unit *io;
|
|
|
|
io = kmem_cache_alloc(kc, gfp_mask);
|
|
if (!io)
|
|
return NULL;
|
|
|
|
io->header_page = alloc_page(gfp_mask);
|
|
if (!io->header_page) {
|
|
kmem_cache_free(kc, io);
|
|
return NULL;
|
|
}
|
|
|
|
return io;
|
|
}
|
|
|
|
static void ppl_io_pool_free(void *element, void *pool_data)
|
|
{
|
|
struct kmem_cache *kc = pool_data;
|
|
struct ppl_io_unit *io = element;
|
|
|
|
__free_page(io->header_page);
|
|
kmem_cache_free(kc, io);
|
|
}
|
|
|
|
static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
|
|
struct stripe_head *sh)
|
|
{
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct ppl_io_unit *io;
|
|
struct ppl_header *pplhdr;
|
|
struct page *header_page;
|
|
|
|
io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
|
|
if (!io)
|
|
return NULL;
|
|
|
|
header_page = io->header_page;
|
|
memset(io, 0, sizeof(*io));
|
|
io->header_page = header_page;
|
|
|
|
io->log = log;
|
|
INIT_LIST_HEAD(&io->log_sibling);
|
|
INIT_LIST_HEAD(&io->stripe_list);
|
|
atomic_set(&io->pending_stripes, 0);
|
|
atomic_set(&io->pending_flushes, 0);
|
|
bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS,
|
|
REQ_OP_WRITE | REQ_FUA);
|
|
|
|
pplhdr = page_address(io->header_page);
|
|
clear_page(pplhdr);
|
|
memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
|
|
pplhdr->signature = cpu_to_le32(ppl_conf->signature);
|
|
|
|
io->seq = atomic64_add_return(1, &ppl_conf->seq);
|
|
pplhdr->generation = cpu_to_le64(io->seq);
|
|
|
|
return io;
|
|
}
|
|
|
|
static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
|
|
{
|
|
struct ppl_io_unit *io = log->current_io;
|
|
struct ppl_header_entry *e = NULL;
|
|
struct ppl_header *pplhdr;
|
|
int i;
|
|
sector_t data_sector = 0;
|
|
int data_disks = 0;
|
|
struct r5conf *conf = sh->raid_conf;
|
|
|
|
pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
|
|
|
|
/* check if current io_unit is full */
|
|
if (io && (io->pp_size == log->entry_space ||
|
|
io->entries_count == PPL_HDR_MAX_ENTRIES)) {
|
|
pr_debug("%s: add io_unit blocked by seq: %llu\n",
|
|
__func__, io->seq);
|
|
io = NULL;
|
|
}
|
|
|
|
/* add a new unit if there is none or the current is full */
|
|
if (!io) {
|
|
io = ppl_new_iounit(log, sh);
|
|
if (!io)
|
|
return -ENOMEM;
|
|
spin_lock_irq(&log->io_list_lock);
|
|
list_add_tail(&io->log_sibling, &log->io_list);
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
|
|
log->current_io = io;
|
|
}
|
|
|
|
for (i = 0; i < sh->disks; i++) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
|
|
if (!data_disks || dev->sector < data_sector)
|
|
data_sector = dev->sector;
|
|
data_disks++;
|
|
}
|
|
}
|
|
BUG_ON(!data_disks);
|
|
|
|
pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
|
|
io->seq, (unsigned long long)data_sector, data_disks);
|
|
|
|
pplhdr = page_address(io->header_page);
|
|
|
|
if (io->entries_count > 0) {
|
|
struct ppl_header_entry *last =
|
|
&pplhdr->entries[io->entries_count - 1];
|
|
struct stripe_head *sh_last = list_last_entry(
|
|
&io->stripe_list, struct stripe_head, log_list);
|
|
u64 data_sector_last = le64_to_cpu(last->data_sector);
|
|
u32 data_size_last = le32_to_cpu(last->data_size);
|
|
|
|
/*
|
|
* Check if we can append the stripe to the last entry. It must
|
|
* be just after the last logged stripe and write to the same
|
|
* disks. Use bit shift and logarithm to avoid 64-bit division.
|
|
*/
|
|
if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
|
|
(data_sector >> ilog2(conf->chunk_sectors) ==
|
|
data_sector_last >> ilog2(conf->chunk_sectors)) &&
|
|
((data_sector - data_sector_last) * data_disks ==
|
|
data_size_last >> 9))
|
|
e = last;
|
|
}
|
|
|
|
if (!e) {
|
|
e = &pplhdr->entries[io->entries_count++];
|
|
e->data_sector = cpu_to_le64(data_sector);
|
|
e->parity_disk = cpu_to_le32(sh->pd_idx);
|
|
e->checksum = cpu_to_le32(~0);
|
|
}
|
|
|
|
le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
|
|
|
|
/* don't write any PP if full stripe write */
|
|
if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
|
|
le32_add_cpu(&e->pp_size, PAGE_SIZE);
|
|
io->pp_size += PAGE_SIZE;
|
|
e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
|
|
page_address(sh->ppl_page),
|
|
PAGE_SIZE));
|
|
}
|
|
|
|
list_add_tail(&sh->log_list, &io->stripe_list);
|
|
atomic_inc(&io->pending_stripes);
|
|
sh->ppl_io = io;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
|
|
{
|
|
struct ppl_conf *ppl_conf = conf->log_private;
|
|
struct ppl_io_unit *io = sh->ppl_io;
|
|
struct ppl_log *log;
|
|
|
|
if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
|
|
!test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
|
|
!test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
|
|
clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
log = &ppl_conf->child_logs[sh->pd_idx];
|
|
|
|
mutex_lock(&log->io_mutex);
|
|
|
|
if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
|
|
mutex_unlock(&log->io_mutex);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
set_bit(STRIPE_LOG_TRAPPED, &sh->state);
|
|
clear_bit(STRIPE_DELAYED, &sh->state);
|
|
atomic_inc(&sh->count);
|
|
|
|
if (ppl_log_stripe(log, sh)) {
|
|
spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
|
|
list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
|
|
spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
|
|
}
|
|
|
|
mutex_unlock(&log->io_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppl_log_endio(struct bio *bio)
|
|
{
|
|
struct ppl_io_unit *io = bio->bi_private;
|
|
struct ppl_log *log = io->log;
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct stripe_head *sh, *next;
|
|
|
|
pr_debug("%s: seq: %llu\n", __func__, io->seq);
|
|
|
|
if (bio->bi_status)
|
|
md_error(ppl_conf->mddev, log->rdev);
|
|
|
|
list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
|
|
list_del_init(&sh->log_list);
|
|
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
raid5_release_stripe(sh);
|
|
}
|
|
}
|
|
|
|
static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
|
|
{
|
|
pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n",
|
|
__func__, io->seq, bio->bi_iter.bi_size,
|
|
(unsigned long long)bio->bi_iter.bi_sector,
|
|
bio->bi_bdev);
|
|
|
|
submit_bio(bio);
|
|
}
|
|
|
|
static void ppl_submit_iounit(struct ppl_io_unit *io)
|
|
{
|
|
struct ppl_log *log = io->log;
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct ppl_header *pplhdr = page_address(io->header_page);
|
|
struct bio *bio = &io->bio;
|
|
struct stripe_head *sh;
|
|
int i;
|
|
|
|
bio->bi_private = io;
|
|
|
|
if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
|
|
ppl_log_endio(bio);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < io->entries_count; i++) {
|
|
struct ppl_header_entry *e = &pplhdr->entries[i];
|
|
|
|
pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
|
|
__func__, io->seq, i, le64_to_cpu(e->data_sector),
|
|
le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
|
|
|
|
e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
|
|
ilog2(ppl_conf->block_size >> 9));
|
|
e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
|
|
}
|
|
|
|
pplhdr->entries_count = cpu_to_le32(io->entries_count);
|
|
pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
|
|
|
|
/* Rewind the buffer if current PPL is larger then remaining space */
|
|
if (log->use_multippl &&
|
|
log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
|
|
(PPL_HEADER_SIZE + io->pp_size) >> 9)
|
|
log->next_io_sector = log->rdev->ppl.sector;
|
|
|
|
|
|
bio->bi_end_io = ppl_log_endio;
|
|
bio->bi_iter.bi_sector = log->next_io_sector;
|
|
__bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
|
|
|
|
pr_debug("%s: log->current_io_sector: %llu\n", __func__,
|
|
(unsigned long long)log->next_io_sector);
|
|
|
|
if (log->use_multippl)
|
|
log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
|
|
|
|
WARN_ON(log->disk_flush_bitmap != 0);
|
|
|
|
list_for_each_entry(sh, &io->stripe_list, log_list) {
|
|
for (i = 0; i < sh->disks; i++) {
|
|
struct r5dev *dev = &sh->dev[i];
|
|
|
|
if ((ppl_conf->child_logs[i].wb_cache_on) &&
|
|
(test_bit(R5_Wantwrite, &dev->flags))) {
|
|
set_bit(i, &log->disk_flush_bitmap);
|
|
}
|
|
}
|
|
|
|
/* entries for full stripe writes have no partial parity */
|
|
if (test_bit(STRIPE_FULL_WRITE, &sh->state))
|
|
continue;
|
|
|
|
if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
|
|
struct bio *prev = bio;
|
|
|
|
bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS,
|
|
prev->bi_opf, GFP_NOIO,
|
|
&ppl_conf->bs);
|
|
bio->bi_iter.bi_sector = bio_end_sector(prev);
|
|
__bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
|
|
|
|
bio_chain(bio, prev);
|
|
ppl_submit_iounit_bio(io, prev);
|
|
}
|
|
}
|
|
|
|
ppl_submit_iounit_bio(io, bio);
|
|
}
|
|
|
|
static void ppl_submit_current_io(struct ppl_log *log)
|
|
{
|
|
struct ppl_io_unit *io;
|
|
|
|
spin_lock_irq(&log->io_list_lock);
|
|
|
|
io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
|
|
log_sibling);
|
|
if (io && io->submitted)
|
|
io = NULL;
|
|
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
|
|
if (io) {
|
|
io->submitted = true;
|
|
|
|
if (io == log->current_io)
|
|
log->current_io = NULL;
|
|
|
|
ppl_submit_iounit(io);
|
|
}
|
|
}
|
|
|
|
void ppl_write_stripe_run(struct r5conf *conf)
|
|
{
|
|
struct ppl_conf *ppl_conf = conf->log_private;
|
|
struct ppl_log *log;
|
|
int i;
|
|
|
|
for (i = 0; i < ppl_conf->count; i++) {
|
|
log = &ppl_conf->child_logs[i];
|
|
|
|
mutex_lock(&log->io_mutex);
|
|
ppl_submit_current_io(log);
|
|
mutex_unlock(&log->io_mutex);
|
|
}
|
|
}
|
|
|
|
static void ppl_io_unit_finished(struct ppl_io_unit *io)
|
|
{
|
|
struct ppl_log *log = io->log;
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct r5conf *conf = ppl_conf->mddev->private;
|
|
unsigned long flags;
|
|
|
|
pr_debug("%s: seq: %llu\n", __func__, io->seq);
|
|
|
|
local_irq_save(flags);
|
|
|
|
spin_lock(&log->io_list_lock);
|
|
list_del(&io->log_sibling);
|
|
spin_unlock(&log->io_list_lock);
|
|
|
|
mempool_free(io, &ppl_conf->io_pool);
|
|
|
|
spin_lock(&ppl_conf->no_mem_stripes_lock);
|
|
if (!list_empty(&ppl_conf->no_mem_stripes)) {
|
|
struct stripe_head *sh;
|
|
|
|
sh = list_first_entry(&ppl_conf->no_mem_stripes,
|
|
struct stripe_head, log_list);
|
|
list_del_init(&sh->log_list);
|
|
set_bit(STRIPE_HANDLE, &sh->state);
|
|
raid5_release_stripe(sh);
|
|
}
|
|
spin_unlock(&ppl_conf->no_mem_stripes_lock);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
wake_up(&conf->wait_for_quiescent);
|
|
}
|
|
|
|
static void ppl_flush_endio(struct bio *bio)
|
|
{
|
|
struct ppl_io_unit *io = bio->bi_private;
|
|
struct ppl_log *log = io->log;
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct r5conf *conf = ppl_conf->mddev->private;
|
|
|
|
pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev);
|
|
|
|
if (bio->bi_status) {
|
|
struct md_rdev *rdev;
|
|
|
|
rcu_read_lock();
|
|
rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
|
|
if (rdev)
|
|
md_error(rdev->mddev, rdev);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
bio_put(bio);
|
|
|
|
if (atomic_dec_and_test(&io->pending_flushes)) {
|
|
ppl_io_unit_finished(io);
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
}
|
|
}
|
|
|
|
static void ppl_do_flush(struct ppl_io_unit *io)
|
|
{
|
|
struct ppl_log *log = io->log;
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct r5conf *conf = ppl_conf->mddev->private;
|
|
int raid_disks = conf->raid_disks;
|
|
int flushed_disks = 0;
|
|
int i;
|
|
|
|
atomic_set(&io->pending_flushes, raid_disks);
|
|
|
|
for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
|
|
struct md_rdev *rdev;
|
|
struct block_device *bdev = NULL;
|
|
|
|
rdev = conf->disks[i].rdev;
|
|
if (rdev && !test_bit(Faulty, &rdev->flags))
|
|
bdev = rdev->bdev;
|
|
|
|
if (bdev) {
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc_bioset(bdev, 0,
|
|
REQ_OP_WRITE | REQ_PREFLUSH,
|
|
GFP_NOIO, &ppl_conf->flush_bs);
|
|
bio->bi_private = io;
|
|
bio->bi_end_io = ppl_flush_endio;
|
|
|
|
pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev);
|
|
|
|
submit_bio(bio);
|
|
flushed_disks++;
|
|
}
|
|
}
|
|
|
|
log->disk_flush_bitmap = 0;
|
|
|
|
for (i = flushed_disks ; i < raid_disks; i++) {
|
|
if (atomic_dec_and_test(&io->pending_flushes))
|
|
ppl_io_unit_finished(io);
|
|
}
|
|
}
|
|
|
|
static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
|
|
struct ppl_log *log)
|
|
{
|
|
struct ppl_io_unit *io;
|
|
|
|
io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
|
|
log_sibling);
|
|
|
|
return !io || !io->submitted;
|
|
}
|
|
|
|
void ppl_quiesce(struct r5conf *conf, int quiesce)
|
|
{
|
|
struct ppl_conf *ppl_conf = conf->log_private;
|
|
int i;
|
|
|
|
if (quiesce) {
|
|
for (i = 0; i < ppl_conf->count; i++) {
|
|
struct ppl_log *log = &ppl_conf->child_logs[i];
|
|
|
|
spin_lock_irq(&log->io_list_lock);
|
|
wait_event_lock_irq(conf->wait_for_quiescent,
|
|
ppl_no_io_unit_submitted(conf, log),
|
|
log->io_list_lock);
|
|
spin_unlock_irq(&log->io_list_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
int ppl_handle_flush_request(struct bio *bio)
|
|
{
|
|
if (bio->bi_iter.bi_size == 0) {
|
|
bio_endio(bio);
|
|
return 0;
|
|
}
|
|
bio->bi_opf &= ~REQ_PREFLUSH;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
void ppl_stripe_write_finished(struct stripe_head *sh)
|
|
{
|
|
struct ppl_io_unit *io;
|
|
|
|
io = sh->ppl_io;
|
|
sh->ppl_io = NULL;
|
|
|
|
if (io && atomic_dec_and_test(&io->pending_stripes)) {
|
|
if (io->log->disk_flush_bitmap)
|
|
ppl_do_flush(io);
|
|
else
|
|
ppl_io_unit_finished(io);
|
|
}
|
|
}
|
|
|
|
static void ppl_xor(int size, struct page *page1, struct page *page2)
|
|
{
|
|
struct async_submit_ctl submit;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct page *xor_srcs[] = { page1, page2 };
|
|
|
|
init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
|
|
NULL, NULL, NULL, NULL);
|
|
tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
|
|
|
|
async_tx_quiesce(&tx);
|
|
}
|
|
|
|
/*
|
|
* PPL recovery strategy: xor partial parity and data from all modified data
|
|
* disks within a stripe and write the result as the new stripe parity. If all
|
|
* stripe data disks are modified (full stripe write), no partial parity is
|
|
* available, so just xor the data disks.
|
|
*
|
|
* Recovery of a PPL entry shall occur only if all modified data disks are
|
|
* available and read from all of them succeeds.
|
|
*
|
|
* A PPL entry applies to a stripe, partial parity size for an entry is at most
|
|
* the size of the chunk. Examples of possible cases for a single entry:
|
|
*
|
|
* case 0: single data disk write:
|
|
* data0 data1 data2 ppl parity
|
|
* +--------+--------+--------+ +--------------------+
|
|
* | ------ | ------ | ------ | +----+ | (no change) |
|
|
* | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
|
|
* | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
|
|
* | ------ | ------ | ------ | +----+ | (no change) |
|
|
* +--------+--------+--------+ +--------------------+
|
|
* pp_size = data_size
|
|
*
|
|
* case 1: more than one data disk write:
|
|
* data0 data1 data2 ppl parity
|
|
* +--------+--------+--------+ +--------------------+
|
|
* | ------ | ------ | ------ | +----+ | (no change) |
|
|
* | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
|
|
* | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
|
|
* | ------ | ------ | ------ | +----+ | (no change) |
|
|
* +--------+--------+--------+ +--------------------+
|
|
* pp_size = data_size / modified_data_disks
|
|
*
|
|
* case 2: write to all data disks (also full stripe write):
|
|
* data0 data1 data2 parity
|
|
* +--------+--------+--------+ +--------------------+
|
|
* | ------ | ------ | ------ | | (no change) |
|
|
* | -data- | -data- | -data- | --------> | xor all data |
|
|
* | ------ | ------ | ------ | --------> | (no change) |
|
|
* | ------ | ------ | ------ | | (no change) |
|
|
* +--------+--------+--------+ +--------------------+
|
|
* pp_size = 0
|
|
*
|
|
* The following cases are possible only in other implementations. The recovery
|
|
* code can handle them, but they are not generated at runtime because they can
|
|
* be reduced to cases 0, 1 and 2:
|
|
*
|
|
* case 3:
|
|
* data0 data1 data2 ppl parity
|
|
* +--------+--------+--------+ +----+ +--------------------+
|
|
* | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp |
|
|
* | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
|
|
* | -data- | -data- | -data- | | -- | -> | xor all data |
|
|
* | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp |
|
|
* +--------+--------+--------+ +----+ +--------------------+
|
|
* pp_size = chunk_size
|
|
*
|
|
* case 4:
|
|
* data0 data1 data2 ppl parity
|
|
* +--------+--------+--------+ +----+ +--------------------+
|
|
* | ------ | -data- | ------ | | pp | | data1 ^ pp |
|
|
* | ------ | ------ | ------ | | -- | -> | (no change) |
|
|
* | ------ | ------ | ------ | | -- | -> | (no change) |
|
|
* | -data- | ------ | ------ | | pp | | data0 ^ pp |
|
|
* +--------+--------+--------+ +----+ +--------------------+
|
|
* pp_size = chunk_size
|
|
*/
|
|
static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
|
|
sector_t ppl_sector)
|
|
{
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct mddev *mddev = ppl_conf->mddev;
|
|
struct r5conf *conf = mddev->private;
|
|
int block_size = ppl_conf->block_size;
|
|
struct page *page1;
|
|
struct page *page2;
|
|
sector_t r_sector_first;
|
|
sector_t r_sector_last;
|
|
int strip_sectors;
|
|
int data_disks;
|
|
int i;
|
|
int ret = 0;
|
|
unsigned int pp_size = le32_to_cpu(e->pp_size);
|
|
unsigned int data_size = le32_to_cpu(e->data_size);
|
|
|
|
page1 = alloc_page(GFP_KERNEL);
|
|
page2 = alloc_page(GFP_KERNEL);
|
|
|
|
if (!page1 || !page2) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
|
|
|
|
if ((pp_size >> 9) < conf->chunk_sectors) {
|
|
if (pp_size > 0) {
|
|
data_disks = data_size / pp_size;
|
|
strip_sectors = pp_size >> 9;
|
|
} else {
|
|
data_disks = conf->raid_disks - conf->max_degraded;
|
|
strip_sectors = (data_size >> 9) / data_disks;
|
|
}
|
|
r_sector_last = r_sector_first +
|
|
(data_disks - 1) * conf->chunk_sectors +
|
|
strip_sectors;
|
|
} else {
|
|
data_disks = conf->raid_disks - conf->max_degraded;
|
|
strip_sectors = conf->chunk_sectors;
|
|
r_sector_last = r_sector_first + (data_size >> 9);
|
|
}
|
|
|
|
pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
|
|
(unsigned long long)r_sector_first,
|
|
(unsigned long long)r_sector_last);
|
|
|
|
/* if start and end is 4k aligned, use a 4k block */
|
|
if (block_size == 512 &&
|
|
(r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
|
|
(r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
|
|
block_size = RAID5_STRIPE_SIZE(conf);
|
|
|
|
/* iterate through blocks in strip */
|
|
for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
|
|
bool update_parity = false;
|
|
sector_t parity_sector;
|
|
struct md_rdev *parity_rdev;
|
|
struct stripe_head sh;
|
|
int disk;
|
|
int indent = 0;
|
|
|
|
pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
|
|
indent += 2;
|
|
|
|
memset(page_address(page1), 0, PAGE_SIZE);
|
|
|
|
/* iterate through data member disks */
|
|
for (disk = 0; disk < data_disks; disk++) {
|
|
int dd_idx;
|
|
struct md_rdev *rdev;
|
|
sector_t sector;
|
|
sector_t r_sector = r_sector_first + i +
|
|
(disk * conf->chunk_sectors);
|
|
|
|
pr_debug("%s:%*s data member disk %d start\n",
|
|
__func__, indent, "", disk);
|
|
indent += 2;
|
|
|
|
if (r_sector >= r_sector_last) {
|
|
pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
|
|
__func__, indent, "",
|
|
(unsigned long long)r_sector);
|
|
indent -= 2;
|
|
continue;
|
|
}
|
|
|
|
update_parity = true;
|
|
|
|
/* map raid sector to member disk */
|
|
sector = raid5_compute_sector(conf, r_sector, 0,
|
|
&dd_idx, NULL);
|
|
pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
|
|
__func__, indent, "",
|
|
(unsigned long long)r_sector, dd_idx,
|
|
(unsigned long long)sector);
|
|
|
|
rdev = conf->disks[dd_idx].rdev;
|
|
if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
|
|
sector >= rdev->recovery_offset)) {
|
|
pr_debug("%s:%*s data member disk %d missing\n",
|
|
__func__, indent, "", dd_idx);
|
|
update_parity = false;
|
|
break;
|
|
}
|
|
|
|
pr_debug("%s:%*s reading data member disk %pg sector %llu\n",
|
|
__func__, indent, "", rdev->bdev,
|
|
(unsigned long long)sector);
|
|
if (!sync_page_io(rdev, sector, block_size, page2,
|
|
REQ_OP_READ, false)) {
|
|
md_error(mddev, rdev);
|
|
pr_debug("%s:%*s read failed!\n", __func__,
|
|
indent, "");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ppl_xor(block_size, page1, page2);
|
|
|
|
indent -= 2;
|
|
}
|
|
|
|
if (!update_parity)
|
|
continue;
|
|
|
|
if (pp_size > 0) {
|
|
pr_debug("%s:%*s reading pp disk sector %llu\n",
|
|
__func__, indent, "",
|
|
(unsigned long long)(ppl_sector + i));
|
|
if (!sync_page_io(log->rdev,
|
|
ppl_sector - log->rdev->data_offset + i,
|
|
block_size, page2, REQ_OP_READ,
|
|
false)) {
|
|
pr_debug("%s:%*s read failed!\n", __func__,
|
|
indent, "");
|
|
md_error(mddev, log->rdev);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ppl_xor(block_size, page1, page2);
|
|
}
|
|
|
|
/* map raid sector to parity disk */
|
|
parity_sector = raid5_compute_sector(conf, r_sector_first + i,
|
|
0, &disk, &sh);
|
|
BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
|
|
|
|
parity_rdev = conf->disks[sh.pd_idx].rdev;
|
|
|
|
BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
|
|
pr_debug("%s:%*s write parity at sector %llu, disk %pg\n",
|
|
__func__, indent, "",
|
|
(unsigned long long)parity_sector,
|
|
parity_rdev->bdev);
|
|
if (!sync_page_io(parity_rdev, parity_sector, block_size,
|
|
page1, REQ_OP_WRITE, false)) {
|
|
pr_debug("%s:%*s parity write error!\n", __func__,
|
|
indent, "");
|
|
md_error(mddev, parity_rdev);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
if (page1)
|
|
__free_page(page1);
|
|
if (page2)
|
|
__free_page(page2);
|
|
return ret;
|
|
}
|
|
|
|
static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
|
|
sector_t offset)
|
|
{
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct md_rdev *rdev = log->rdev;
|
|
struct mddev *mddev = rdev->mddev;
|
|
sector_t ppl_sector = rdev->ppl.sector + offset +
|
|
(PPL_HEADER_SIZE >> 9);
|
|
struct page *page;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
/* iterate through all PPL entries saved */
|
|
for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
|
|
struct ppl_header_entry *e = &pplhdr->entries[i];
|
|
u32 pp_size = le32_to_cpu(e->pp_size);
|
|
sector_t sector = ppl_sector;
|
|
int ppl_entry_sectors = pp_size >> 9;
|
|
u32 crc, crc_stored;
|
|
|
|
pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
|
|
__func__, rdev->raid_disk, i,
|
|
(unsigned long long)ppl_sector, pp_size);
|
|
|
|
crc = ~0;
|
|
crc_stored = le32_to_cpu(e->checksum);
|
|
|
|
/* read parial parity for this entry and calculate its checksum */
|
|
while (pp_size) {
|
|
int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
|
|
|
|
if (!sync_page_io(rdev, sector - rdev->data_offset,
|
|
s, page, REQ_OP_READ, false)) {
|
|
md_error(mddev, rdev);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
crc = crc32c_le(crc, page_address(page), s);
|
|
|
|
pp_size -= s;
|
|
sector += s >> 9;
|
|
}
|
|
|
|
crc = ~crc;
|
|
|
|
if (crc != crc_stored) {
|
|
/*
|
|
* Don't recover this entry if the checksum does not
|
|
* match, but keep going and try to recover other
|
|
* entries.
|
|
*/
|
|
pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
|
|
__func__, crc_stored, crc);
|
|
ppl_conf->mismatch_count++;
|
|
} else {
|
|
ret = ppl_recover_entry(log, e, ppl_sector);
|
|
if (ret)
|
|
goto out;
|
|
ppl_conf->recovered_entries++;
|
|
}
|
|
|
|
ppl_sector += ppl_entry_sectors;
|
|
}
|
|
|
|
/* flush the disk cache after recovery if necessary */
|
|
ret = blkdev_issue_flush(rdev->bdev);
|
|
out:
|
|
__free_page(page);
|
|
return ret;
|
|
}
|
|
|
|
static int ppl_write_empty_header(struct ppl_log *log)
|
|
{
|
|
struct page *page;
|
|
struct ppl_header *pplhdr;
|
|
struct md_rdev *rdev = log->rdev;
|
|
int ret = 0;
|
|
|
|
pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
|
|
rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
|
|
|
|
page = alloc_page(GFP_NOIO | __GFP_ZERO);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
pplhdr = page_address(page);
|
|
/* zero out PPL space to avoid collision with old PPLs */
|
|
blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
|
|
log->rdev->ppl.size, GFP_NOIO, 0);
|
|
memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
|
|
pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
|
|
pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
|
|
|
|
if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
|
|
PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
|
|
REQ_FUA, false)) {
|
|
md_error(rdev->mddev, rdev);
|
|
ret = -EIO;
|
|
}
|
|
|
|
__free_page(page);
|
|
return ret;
|
|
}
|
|
|
|
static int ppl_load_distributed(struct ppl_log *log)
|
|
{
|
|
struct ppl_conf *ppl_conf = log->ppl_conf;
|
|
struct md_rdev *rdev = log->rdev;
|
|
struct mddev *mddev = rdev->mddev;
|
|
struct page *page, *page2;
|
|
struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
|
|
u32 crc, crc_stored;
|
|
u32 signature;
|
|
int ret = 0, i;
|
|
sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
|
|
|
|
pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
|
|
/* read PPL headers, find the recent one */
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
page2 = alloc_page(GFP_KERNEL);
|
|
if (!page2) {
|
|
__free_page(page);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* searching ppl area for latest ppl */
|
|
while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
|
|
if (!sync_page_io(rdev,
|
|
rdev->ppl.sector - rdev->data_offset +
|
|
pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
|
|
false)) {
|
|
md_error(mddev, rdev);
|
|
ret = -EIO;
|
|
/* if not able to read - don't recover any PPL */
|
|
pplhdr = NULL;
|
|
break;
|
|
}
|
|
pplhdr = page_address(page);
|
|
|
|
/* check header validity */
|
|
crc_stored = le32_to_cpu(pplhdr->checksum);
|
|
pplhdr->checksum = 0;
|
|
crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
|
|
|
|
if (crc_stored != crc) {
|
|
pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
|
|
__func__, crc_stored, crc,
|
|
(unsigned long long)pplhdr_offset);
|
|
pplhdr = prev_pplhdr;
|
|
pplhdr_offset = prev_pplhdr_offset;
|
|
break;
|
|
}
|
|
|
|
signature = le32_to_cpu(pplhdr->signature);
|
|
|
|
if (mddev->external) {
|
|
/*
|
|
* For external metadata the header signature is set and
|
|
* validated in userspace.
|
|
*/
|
|
ppl_conf->signature = signature;
|
|
} else if (ppl_conf->signature != signature) {
|
|
pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
|
|
__func__, signature, ppl_conf->signature,
|
|
(unsigned long long)pplhdr_offset);
|
|
pplhdr = prev_pplhdr;
|
|
pplhdr_offset = prev_pplhdr_offset;
|
|
break;
|
|
}
|
|
|
|
if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
|
|
le64_to_cpu(pplhdr->generation)) {
|
|
/* previous was newest */
|
|
pplhdr = prev_pplhdr;
|
|
pplhdr_offset = prev_pplhdr_offset;
|
|
break;
|
|
}
|
|
|
|
prev_pplhdr_offset = pplhdr_offset;
|
|
prev_pplhdr = pplhdr;
|
|
|
|
swap(page, page2);
|
|
|
|
/* calculate next potential ppl offset */
|
|
for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
|
|
pplhdr_offset +=
|
|
le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
|
|
pplhdr_offset += PPL_HEADER_SIZE >> 9;
|
|
}
|
|
|
|
/* no valid ppl found */
|
|
if (!pplhdr)
|
|
ppl_conf->mismatch_count++;
|
|
else
|
|
pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
|
|
__func__, (unsigned long long)pplhdr_offset,
|
|
le64_to_cpu(pplhdr->generation));
|
|
|
|
/* attempt to recover from log if we are starting a dirty array */
|
|
if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
|
|
ret = ppl_recover(log, pplhdr, pplhdr_offset);
|
|
|
|
/* write empty header if we are starting the array */
|
|
if (!ret && !mddev->pers)
|
|
ret = ppl_write_empty_header(log);
|
|
|
|
__free_page(page);
|
|
__free_page(page2);
|
|
|
|
pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
|
|
__func__, ret, ppl_conf->mismatch_count,
|
|
ppl_conf->recovered_entries);
|
|
return ret;
|
|
}
|
|
|
|
static int ppl_load(struct ppl_conf *ppl_conf)
|
|
{
|
|
int ret = 0;
|
|
u32 signature = 0;
|
|
bool signature_set = false;
|
|
int i;
|
|
|
|
for (i = 0; i < ppl_conf->count; i++) {
|
|
struct ppl_log *log = &ppl_conf->child_logs[i];
|
|
|
|
/* skip missing drive */
|
|
if (!log->rdev)
|
|
continue;
|
|
|
|
ret = ppl_load_distributed(log);
|
|
if (ret)
|
|
break;
|
|
|
|
/*
|
|
* For external metadata we can't check if the signature is
|
|
* correct on a single drive, but we can check if it is the same
|
|
* on all drives.
|
|
*/
|
|
if (ppl_conf->mddev->external) {
|
|
if (!signature_set) {
|
|
signature = ppl_conf->signature;
|
|
signature_set = true;
|
|
} else if (signature != ppl_conf->signature) {
|
|
pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
|
|
mdname(ppl_conf->mddev));
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
|
|
__func__, ret, ppl_conf->mismatch_count,
|
|
ppl_conf->recovered_entries);
|
|
return ret;
|
|
}
|
|
|
|
static void __ppl_exit_log(struct ppl_conf *ppl_conf)
|
|
{
|
|
clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
|
|
clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
|
|
|
|
kfree(ppl_conf->child_logs);
|
|
|
|
bioset_exit(&ppl_conf->bs);
|
|
bioset_exit(&ppl_conf->flush_bs);
|
|
mempool_exit(&ppl_conf->io_pool);
|
|
kmem_cache_destroy(ppl_conf->io_kc);
|
|
|
|
kfree(ppl_conf);
|
|
}
|
|
|
|
void ppl_exit_log(struct r5conf *conf)
|
|
{
|
|
struct ppl_conf *ppl_conf = conf->log_private;
|
|
|
|
if (ppl_conf) {
|
|
__ppl_exit_log(ppl_conf);
|
|
conf->log_private = NULL;
|
|
}
|
|
}
|
|
|
|
static int ppl_validate_rdev(struct md_rdev *rdev)
|
|
{
|
|
int ppl_data_sectors;
|
|
int ppl_size_new;
|
|
|
|
/*
|
|
* The configured PPL size must be enough to store
|
|
* the header and (at the very least) partial parity
|
|
* for one stripe. Round it down to ensure the data
|
|
* space is cleanly divisible by stripe size.
|
|
*/
|
|
ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
|
|
|
|
if (ppl_data_sectors > 0)
|
|
ppl_data_sectors = rounddown(ppl_data_sectors,
|
|
RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
|
|
|
|
if (ppl_data_sectors <= 0) {
|
|
pr_warn("md/raid:%s: PPL space too small on %pg\n",
|
|
mdname(rdev->mddev), rdev->bdev);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
|
|
|
|
if ((rdev->ppl.sector < rdev->data_offset &&
|
|
rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
|
|
(rdev->ppl.sector >= rdev->data_offset &&
|
|
rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
|
|
pr_warn("md/raid:%s: PPL space overlaps with data on %pg\n",
|
|
mdname(rdev->mddev), rdev->bdev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rdev->mddev->external &&
|
|
((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
|
|
(rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
|
|
pr_warn("md/raid:%s: PPL space overlaps with superblock on %pg\n",
|
|
mdname(rdev->mddev), rdev->bdev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rdev->ppl.size = ppl_size_new;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
|
|
{
|
|
if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
|
|
PPL_HEADER_SIZE) * 2) {
|
|
log->use_multippl = true;
|
|
set_bit(MD_HAS_MULTIPLE_PPLS,
|
|
&log->ppl_conf->mddev->flags);
|
|
log->entry_space = PPL_SPACE_SIZE;
|
|
} else {
|
|
log->use_multippl = false;
|
|
log->entry_space = (log->rdev->ppl.size << 9) -
|
|
PPL_HEADER_SIZE;
|
|
}
|
|
log->next_io_sector = rdev->ppl.sector;
|
|
|
|
if (bdev_write_cache(rdev->bdev))
|
|
log->wb_cache_on = true;
|
|
}
|
|
|
|
int ppl_init_log(struct r5conf *conf)
|
|
{
|
|
struct ppl_conf *ppl_conf;
|
|
struct mddev *mddev = conf->mddev;
|
|
int ret = 0;
|
|
int max_disks;
|
|
int i;
|
|
|
|
pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
|
|
mdname(conf->mddev));
|
|
|
|
if (PAGE_SIZE != 4096)
|
|
return -EINVAL;
|
|
|
|
if (mddev->level != 5) {
|
|
pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
|
|
mdname(mddev), mddev->level);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
|
|
pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
|
|
mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
|
|
pr_warn("md/raid:%s PPL is not compatible with journal\n",
|
|
mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
|
|
BITS_PER_BYTE;
|
|
if (conf->raid_disks > max_disks) {
|
|
pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
|
|
mdname(mddev), max_disks);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
|
|
if (!ppl_conf)
|
|
return -ENOMEM;
|
|
|
|
ppl_conf->mddev = mddev;
|
|
|
|
ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
|
|
if (!ppl_conf->io_kc) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
|
|
ppl_io_pool_free, ppl_conf->io_kc);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ppl_conf->count = conf->raid_disks;
|
|
ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
|
|
GFP_KERNEL);
|
|
if (!ppl_conf->child_logs) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
atomic64_set(&ppl_conf->seq, 0);
|
|
INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
|
|
spin_lock_init(&ppl_conf->no_mem_stripes_lock);
|
|
|
|
if (!mddev->external) {
|
|
ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
|
|
ppl_conf->block_size = 512;
|
|
} else {
|
|
ppl_conf->block_size =
|
|
queue_logical_block_size(mddev->gendisk->queue);
|
|
}
|
|
|
|
for (i = 0; i < ppl_conf->count; i++) {
|
|
struct ppl_log *log = &ppl_conf->child_logs[i];
|
|
struct md_rdev *rdev = conf->disks[i].rdev;
|
|
|
|
mutex_init(&log->io_mutex);
|
|
spin_lock_init(&log->io_list_lock);
|
|
INIT_LIST_HEAD(&log->io_list);
|
|
|
|
log->ppl_conf = ppl_conf;
|
|
log->rdev = rdev;
|
|
|
|
if (rdev) {
|
|
ret = ppl_validate_rdev(rdev);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ppl_init_child_log(log, rdev);
|
|
}
|
|
}
|
|
|
|
/* load and possibly recover the logs from the member disks */
|
|
ret = ppl_load(ppl_conf);
|
|
|
|
if (ret) {
|
|
goto err;
|
|
} else if (!mddev->pers && mddev->recovery_cp == 0 &&
|
|
ppl_conf->recovered_entries > 0 &&
|
|
ppl_conf->mismatch_count == 0) {
|
|
/*
|
|
* If we are starting a dirty array and the recovery succeeds
|
|
* without any issues, set the array as clean.
|
|
*/
|
|
mddev->recovery_cp = MaxSector;
|
|
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
|
|
} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
|
|
/* no mismatch allowed when enabling PPL for a running array */
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
conf->log_private = ppl_conf;
|
|
set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
|
|
|
|
return 0;
|
|
err:
|
|
__ppl_exit_log(ppl_conf);
|
|
return ret;
|
|
}
|
|
|
|
int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
|
|
{
|
|
struct ppl_conf *ppl_conf = conf->log_private;
|
|
struct ppl_log *log;
|
|
int ret = 0;
|
|
|
|
if (!rdev)
|
|
return -EINVAL;
|
|
|
|
pr_debug("%s: disk: %d operation: %s dev: %pg\n",
|
|
__func__, rdev->raid_disk, add ? "add" : "remove",
|
|
rdev->bdev);
|
|
|
|
if (rdev->raid_disk < 0)
|
|
return 0;
|
|
|
|
if (rdev->raid_disk >= ppl_conf->count)
|
|
return -ENODEV;
|
|
|
|
log = &ppl_conf->child_logs[rdev->raid_disk];
|
|
|
|
mutex_lock(&log->io_mutex);
|
|
if (add) {
|
|
ret = ppl_validate_rdev(rdev);
|
|
if (!ret) {
|
|
log->rdev = rdev;
|
|
ret = ppl_write_empty_header(log);
|
|
ppl_init_child_log(log, rdev);
|
|
}
|
|
} else {
|
|
log->rdev = NULL;
|
|
}
|
|
mutex_unlock(&log->io_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t
|
|
ppl_write_hint_show(struct mddev *mddev, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", 0);
|
|
}
|
|
|
|
static ssize_t
|
|
ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
|
|
{
|
|
struct r5conf *conf;
|
|
int err = 0;
|
|
unsigned short new;
|
|
|
|
if (len >= PAGE_SIZE)
|
|
return -EINVAL;
|
|
if (kstrtou16(page, 10, &new))
|
|
return -EINVAL;
|
|
|
|
err = mddev_lock(mddev);
|
|
if (err)
|
|
return err;
|
|
|
|
conf = mddev->private;
|
|
if (!conf)
|
|
err = -ENODEV;
|
|
else if (!raid5_has_ppl(conf) || !conf->log_private)
|
|
err = -EINVAL;
|
|
|
|
mddev_unlock(mddev);
|
|
|
|
return err ?: len;
|
|
}
|
|
|
|
struct md_sysfs_entry
|
|
ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
|
|
ppl_write_hint_show,
|
|
ppl_write_hint_store);
|