linux/kernel/watchdog.c
Waiman Long 97cf8f5f93 watchdog: handle the ENODEV failure case of lockup_detector_delay_init() separately
When watchdog_hardlockup_probe() is being called by
lockup_detector_delay_init(), an error return of -ENODEV will happen
for the arm64 arch when arch_perf_nmi_is_available() returns false. This
means that NMI is not usable by the hard lockup detector and so has to
be disabled. This can be considered a deficiency in that particular
arm64 chip, but there is nothing we can do about it.  That also means
the following error will always be reported when the kernel boot up.

  watchdog: Delayed init of the lockup detector failed: -19

The word "failed" itself has a connotation that there is something
wrong with the kernel which is not really the case here. Handle this
special ENODEV case separately and explain the reason behind disabling
hard lockup detector without causing anxiety for those users who read
the above message and wonder about it.

Link: https://lkml.kernel.org/r/20240802151621.617244-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Joel Granados <j.granados@samsung.com>
Cc: Li Zhe <lizhe.67@bytedance.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:43:32 -07:00

1269 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Detect hard and soft lockups on a system
*
* started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
*
* Note: Most of this code is borrowed heavily from the original softlockup
* detector, so thanks to Ingo for the initial implementation.
* Some chunks also taken from the old x86-specific nmi watchdog code, thanks
* to those contributors as well.
*/
#define pr_fmt(fmt) "watchdog: " fmt
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <linux/kernel_stat.h>
#include <linux/kvm_para.h>
#include <linux/math64.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/stop_machine.h>
#include <linux/sysctl.h>
#include <linux/tick.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
#include <linux/sched/isolation.h>
#include <asm/irq_regs.h>
static DEFINE_MUTEX(watchdog_mutex);
#if defined(CONFIG_HARDLOCKUP_DETECTOR) || defined(CONFIG_HARDLOCKUP_DETECTOR_SPARC64)
# define WATCHDOG_HARDLOCKUP_DEFAULT 1
#else
# define WATCHDOG_HARDLOCKUP_DEFAULT 0
#endif
#define NUM_SAMPLE_PERIODS 5
unsigned long __read_mostly watchdog_enabled;
int __read_mostly watchdog_user_enabled = 1;
static int __read_mostly watchdog_hardlockup_user_enabled = WATCHDOG_HARDLOCKUP_DEFAULT;
static int __read_mostly watchdog_softlockup_user_enabled = 1;
int __read_mostly watchdog_thresh = 10;
static int __read_mostly watchdog_hardlockup_available;
struct cpumask watchdog_cpumask __read_mostly;
unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask);
#ifdef CONFIG_HARDLOCKUP_DETECTOR
# ifdef CONFIG_SMP
int __read_mostly sysctl_hardlockup_all_cpu_backtrace;
# endif /* CONFIG_SMP */
/*
* Should we panic when a soft-lockup or hard-lockup occurs:
*/
unsigned int __read_mostly hardlockup_panic =
IS_ENABLED(CONFIG_BOOTPARAM_HARDLOCKUP_PANIC);
/*
* We may not want to enable hard lockup detection by default in all cases,
* for example when running the kernel as a guest on a hypervisor. In these
* cases this function can be called to disable hard lockup detection. This
* function should only be executed once by the boot processor before the
* kernel command line parameters are parsed, because otherwise it is not
* possible to override this in hardlockup_panic_setup().
*/
void __init hardlockup_detector_disable(void)
{
watchdog_hardlockup_user_enabled = 0;
}
static int __init hardlockup_panic_setup(char *str)
{
next:
if (!strncmp(str, "panic", 5))
hardlockup_panic = 1;
else if (!strncmp(str, "nopanic", 7))
hardlockup_panic = 0;
else if (!strncmp(str, "0", 1))
watchdog_hardlockup_user_enabled = 0;
else if (!strncmp(str, "1", 1))
watchdog_hardlockup_user_enabled = 1;
else if (!strncmp(str, "r", 1))
hardlockup_config_perf_event(str + 1);
while (*(str++)) {
if (*str == ',') {
str++;
goto next;
}
}
return 1;
}
__setup("nmi_watchdog=", hardlockup_panic_setup);
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
#if defined(CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER)
static DEFINE_PER_CPU(atomic_t, hrtimer_interrupts);
static DEFINE_PER_CPU(int, hrtimer_interrupts_saved);
static DEFINE_PER_CPU(bool, watchdog_hardlockup_warned);
static DEFINE_PER_CPU(bool, watchdog_hardlockup_touched);
static unsigned long hard_lockup_nmi_warn;
notrace void arch_touch_nmi_watchdog(void)
{
/*
* Using __raw here because some code paths have
* preemption enabled. If preemption is enabled
* then interrupts should be enabled too, in which
* case we shouldn't have to worry about the watchdog
* going off.
*/
raw_cpu_write(watchdog_hardlockup_touched, true);
}
EXPORT_SYMBOL(arch_touch_nmi_watchdog);
void watchdog_hardlockup_touch_cpu(unsigned int cpu)
{
per_cpu(watchdog_hardlockup_touched, cpu) = true;
}
static bool is_hardlockup(unsigned int cpu)
{
int hrint = atomic_read(&per_cpu(hrtimer_interrupts, cpu));
if (per_cpu(hrtimer_interrupts_saved, cpu) == hrint)
return true;
/*
* NOTE: we don't need any fancy atomic_t or READ_ONCE/WRITE_ONCE
* for hrtimer_interrupts_saved. hrtimer_interrupts_saved is
* written/read by a single CPU.
*/
per_cpu(hrtimer_interrupts_saved, cpu) = hrint;
return false;
}
static void watchdog_hardlockup_kick(void)
{
int new_interrupts;
new_interrupts = atomic_inc_return(this_cpu_ptr(&hrtimer_interrupts));
watchdog_buddy_check_hardlockup(new_interrupts);
}
void watchdog_hardlockup_check(unsigned int cpu, struct pt_regs *regs)
{
if (per_cpu(watchdog_hardlockup_touched, cpu)) {
per_cpu(watchdog_hardlockup_touched, cpu) = false;
return;
}
/*
* Check for a hardlockup by making sure the CPU's timer
* interrupt is incrementing. The timer interrupt should have
* fired multiple times before we overflow'd. If it hasn't
* then this is a good indication the cpu is stuck
*/
if (is_hardlockup(cpu)) {
unsigned int this_cpu = smp_processor_id();
unsigned long flags;
/* Only print hardlockups once. */
if (per_cpu(watchdog_hardlockup_warned, cpu))
return;
/*
* Prevent multiple hard-lockup reports if one cpu is already
* engaged in dumping all cpu back traces.
*/
if (sysctl_hardlockup_all_cpu_backtrace) {
if (test_and_set_bit_lock(0, &hard_lockup_nmi_warn))
return;
}
/*
* NOTE: we call printk_cpu_sync_get_irqsave() after printing
* the lockup message. While it would be nice to serialize
* that printout, we really want to make sure that if some
* other CPU somehow locked up while holding the lock associated
* with printk_cpu_sync_get_irqsave() that we can still at least
* get the message about the lockup out.
*/
pr_emerg("Watchdog detected hard LOCKUP on cpu %d\n", cpu);
printk_cpu_sync_get_irqsave(flags);
print_modules();
print_irqtrace_events(current);
if (cpu == this_cpu) {
if (regs)
show_regs(regs);
else
dump_stack();
printk_cpu_sync_put_irqrestore(flags);
} else {
printk_cpu_sync_put_irqrestore(flags);
trigger_single_cpu_backtrace(cpu);
}
if (sysctl_hardlockup_all_cpu_backtrace) {
trigger_allbutcpu_cpu_backtrace(cpu);
if (!hardlockup_panic)
clear_bit_unlock(0, &hard_lockup_nmi_warn);
}
if (hardlockup_panic)
nmi_panic(regs, "Hard LOCKUP");
per_cpu(watchdog_hardlockup_warned, cpu) = true;
} else {
per_cpu(watchdog_hardlockup_warned, cpu) = false;
}
}
#else /* CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */
static inline void watchdog_hardlockup_kick(void) { }
#endif /* !CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */
/*
* These functions can be overridden based on the configured hardlockdup detector.
*
* watchdog_hardlockup_enable/disable can be implemented to start and stop when
* softlockup watchdog start and stop. The detector must select the
* SOFTLOCKUP_DETECTOR Kconfig.
*/
void __weak watchdog_hardlockup_enable(unsigned int cpu) { }
void __weak watchdog_hardlockup_disable(unsigned int cpu) { }
/*
* Watchdog-detector specific API.
*
* Return 0 when hardlockup watchdog is available, negative value otherwise.
* Note that the negative value means that a delayed probe might
* succeed later.
*/
int __weak __init watchdog_hardlockup_probe(void)
{
return -ENODEV;
}
/**
* watchdog_hardlockup_stop - Stop the watchdog for reconfiguration
*
* The reconfiguration steps are:
* watchdog_hardlockup_stop();
* update_variables();
* watchdog_hardlockup_start();
*/
void __weak watchdog_hardlockup_stop(void) { }
/**
* watchdog_hardlockup_start - Start the watchdog after reconfiguration
*
* Counterpart to watchdog_hardlockup_stop().
*
* The following variables have been updated in update_variables() and
* contain the currently valid configuration:
* - watchdog_enabled
* - watchdog_thresh
* - watchdog_cpumask
*/
void __weak watchdog_hardlockup_start(void) { }
/**
* lockup_detector_update_enable - Update the sysctl enable bit
*
* Caller needs to make sure that the hard watchdogs are off, so this
* can't race with watchdog_hardlockup_disable().
*/
static void lockup_detector_update_enable(void)
{
watchdog_enabled = 0;
if (!watchdog_user_enabled)
return;
if (watchdog_hardlockup_available && watchdog_hardlockup_user_enabled)
watchdog_enabled |= WATCHDOG_HARDLOCKUP_ENABLED;
if (watchdog_softlockup_user_enabled)
watchdog_enabled |= WATCHDOG_SOFTOCKUP_ENABLED;
}
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
/*
* Delay the soflockup report when running a known slow code.
* It does _not_ affect the timestamp of the last successdul reschedule.
*/
#define SOFTLOCKUP_DELAY_REPORT ULONG_MAX
#ifdef CONFIG_SMP
int __read_mostly sysctl_softlockup_all_cpu_backtrace;
#endif
static struct cpumask watchdog_allowed_mask __read_mostly;
/* Global variables, exported for sysctl */
unsigned int __read_mostly softlockup_panic =
IS_ENABLED(CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC);
static bool softlockup_initialized __read_mostly;
static u64 __read_mostly sample_period;
/* Timestamp taken after the last successful reschedule. */
static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts);
/* Timestamp of the last softlockup report. */
static DEFINE_PER_CPU(unsigned long, watchdog_report_ts);
static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer);
static DEFINE_PER_CPU(bool, softlockup_touch_sync);
static unsigned long soft_lockup_nmi_warn;
static int __init softlockup_panic_setup(char *str)
{
softlockup_panic = simple_strtoul(str, NULL, 0);
return 1;
}
__setup("softlockup_panic=", softlockup_panic_setup);
static int __init nowatchdog_setup(char *str)
{
watchdog_user_enabled = 0;
return 1;
}
__setup("nowatchdog", nowatchdog_setup);
static int __init nosoftlockup_setup(char *str)
{
watchdog_softlockup_user_enabled = 0;
return 1;
}
__setup("nosoftlockup", nosoftlockup_setup);
static int __init watchdog_thresh_setup(char *str)
{
get_option(&str, &watchdog_thresh);
return 1;
}
__setup("watchdog_thresh=", watchdog_thresh_setup);
static void __lockup_detector_cleanup(void);
#ifdef CONFIG_SOFTLOCKUP_DETECTOR_INTR_STORM
enum stats_per_group {
STATS_SYSTEM,
STATS_SOFTIRQ,
STATS_HARDIRQ,
STATS_IDLE,
NUM_STATS_PER_GROUP,
};
static const enum cpu_usage_stat tracked_stats[NUM_STATS_PER_GROUP] = {
CPUTIME_SYSTEM,
CPUTIME_SOFTIRQ,
CPUTIME_IRQ,
CPUTIME_IDLE,
};
static DEFINE_PER_CPU(u16, cpustat_old[NUM_STATS_PER_GROUP]);
static DEFINE_PER_CPU(u8, cpustat_util[NUM_SAMPLE_PERIODS][NUM_STATS_PER_GROUP]);
static DEFINE_PER_CPU(u8, cpustat_tail);
/*
* We don't need nanosecond resolution. A granularity of 16ms is
* sufficient for our precision, allowing us to use u16 to store
* cpustats, which will roll over roughly every ~1000 seconds.
* 2^24 ~= 16 * 10^6
*/
static u16 get_16bit_precision(u64 data_ns)
{
return data_ns >> 24LL; /* 2^24ns ~= 16.8ms */
}
static void update_cpustat(void)
{
int i;
u8 util;
u16 old_stat, new_stat;
struct kernel_cpustat kcpustat;
u64 *cpustat = kcpustat.cpustat;
u8 tail = __this_cpu_read(cpustat_tail);
u16 sample_period_16 = get_16bit_precision(sample_period);
kcpustat_cpu_fetch(&kcpustat, smp_processor_id());
for (i = 0; i < NUM_STATS_PER_GROUP; i++) {
old_stat = __this_cpu_read(cpustat_old[i]);
new_stat = get_16bit_precision(cpustat[tracked_stats[i]]);
util = DIV_ROUND_UP(100 * (new_stat - old_stat), sample_period_16);
__this_cpu_write(cpustat_util[tail][i], util);
__this_cpu_write(cpustat_old[i], new_stat);
}
__this_cpu_write(cpustat_tail, (tail + 1) % NUM_SAMPLE_PERIODS);
}
static void print_cpustat(void)
{
int i, group;
u8 tail = __this_cpu_read(cpustat_tail);
u64 sample_period_second = sample_period;
do_div(sample_period_second, NSEC_PER_SEC);
/*
* Outputting the "watchdog" prefix on every line is redundant and not
* concise, and the original alarm information is sufficient for
* positioning in logs, hence here printk() is used instead of pr_crit().
*/
printk(KERN_CRIT "CPU#%d Utilization every %llus during lockup:\n",
smp_processor_id(), sample_period_second);
for (i = 0; i < NUM_SAMPLE_PERIODS; i++) {
group = (tail + i) % NUM_SAMPLE_PERIODS;
printk(KERN_CRIT "\t#%d: %3u%% system,\t%3u%% softirq,\t"
"%3u%% hardirq,\t%3u%% idle\n", i + 1,
__this_cpu_read(cpustat_util[group][STATS_SYSTEM]),
__this_cpu_read(cpustat_util[group][STATS_SOFTIRQ]),
__this_cpu_read(cpustat_util[group][STATS_HARDIRQ]),
__this_cpu_read(cpustat_util[group][STATS_IDLE]));
}
}
#define HARDIRQ_PERCENT_THRESH 50
#define NUM_HARDIRQ_REPORT 5
struct irq_counts {
int irq;
u32 counts;
};
static DEFINE_PER_CPU(bool, snapshot_taken);
/* Tabulate the most frequent interrupts. */
static void tabulate_irq_count(struct irq_counts *irq_counts, int irq, u32 counts, int rank)
{
int i;
struct irq_counts new_count = {irq, counts};
for (i = 0; i < rank; i++) {
if (counts > irq_counts[i].counts)
swap(new_count, irq_counts[i]);
}
}
/*
* If the hardirq time exceeds HARDIRQ_PERCENT_THRESH% of the sample_period,
* then the cause of softlockup might be interrupt storm. In this case, it
* would be useful to start interrupt counting.
*/
static bool need_counting_irqs(void)
{
u8 util;
int tail = __this_cpu_read(cpustat_tail);
tail = (tail + NUM_HARDIRQ_REPORT - 1) % NUM_HARDIRQ_REPORT;
util = __this_cpu_read(cpustat_util[tail][STATS_HARDIRQ]);
return util > HARDIRQ_PERCENT_THRESH;
}
static void start_counting_irqs(void)
{
if (!__this_cpu_read(snapshot_taken)) {
kstat_snapshot_irqs();
__this_cpu_write(snapshot_taken, true);
}
}
static void stop_counting_irqs(void)
{
__this_cpu_write(snapshot_taken, false);
}
static void print_irq_counts(void)
{
unsigned int i, count;
struct irq_counts irq_counts_sorted[NUM_HARDIRQ_REPORT] = {
{-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}
};
if (__this_cpu_read(snapshot_taken)) {
for_each_active_irq(i) {
count = kstat_get_irq_since_snapshot(i);
tabulate_irq_count(irq_counts_sorted, i, count, NUM_HARDIRQ_REPORT);
}
/*
* Outputting the "watchdog" prefix on every line is redundant and not
* concise, and the original alarm information is sufficient for
* positioning in logs, hence here printk() is used instead of pr_crit().
*/
printk(KERN_CRIT "CPU#%d Detect HardIRQ Time exceeds %d%%. Most frequent HardIRQs:\n",
smp_processor_id(), HARDIRQ_PERCENT_THRESH);
for (i = 0; i < NUM_HARDIRQ_REPORT; i++) {
if (irq_counts_sorted[i].irq == -1)
break;
printk(KERN_CRIT "\t#%u: %-10u\tirq#%d\n",
i + 1, irq_counts_sorted[i].counts,
irq_counts_sorted[i].irq);
}
/*
* If the hardirq time is less than HARDIRQ_PERCENT_THRESH% in the last
* sample_period, then we suspect the interrupt storm might be subsiding.
*/
if (!need_counting_irqs())
stop_counting_irqs();
}
}
static void report_cpu_status(void)
{
print_cpustat();
print_irq_counts();
}
#else
static inline void update_cpustat(void) { }
static inline void report_cpu_status(void) { }
static inline bool need_counting_irqs(void) { return false; }
static inline void start_counting_irqs(void) { }
static inline void stop_counting_irqs(void) { }
#endif
/*
* Hard-lockup warnings should be triggered after just a few seconds. Soft-
* lockups can have false positives under extreme conditions. So we generally
* want a higher threshold for soft lockups than for hard lockups. So we couple
* the thresholds with a factor: we make the soft threshold twice the amount of
* time the hard threshold is.
*/
static int get_softlockup_thresh(void)
{
return watchdog_thresh * 2;
}
/*
* Returns seconds, approximately. We don't need nanosecond
* resolution, and we don't need to waste time with a big divide when
* 2^30ns == 1.074s.
*/
static unsigned long get_timestamp(void)
{
return running_clock() >> 30LL; /* 2^30 ~= 10^9 */
}
static void set_sample_period(void)
{
/*
* convert watchdog_thresh from seconds to ns
* the divide by 5 is to give hrtimer several chances (two
* or three with the current relation between the soft
* and hard thresholds) to increment before the
* hardlockup detector generates a warning
*/
sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / NUM_SAMPLE_PERIODS);
watchdog_update_hrtimer_threshold(sample_period);
}
static void update_report_ts(void)
{
__this_cpu_write(watchdog_report_ts, get_timestamp());
}
/* Commands for resetting the watchdog */
static void update_touch_ts(void)
{
__this_cpu_write(watchdog_touch_ts, get_timestamp());
update_report_ts();
}
/**
* touch_softlockup_watchdog_sched - touch watchdog on scheduler stalls
*
* Call when the scheduler may have stalled for legitimate reasons
* preventing the watchdog task from executing - e.g. the scheduler
* entering idle state. This should only be used for scheduler events.
* Use touch_softlockup_watchdog() for everything else.
*/
notrace void touch_softlockup_watchdog_sched(void)
{
/*
* Preemption can be enabled. It doesn't matter which CPU's watchdog
* report period gets restarted here, so use the raw_ operation.
*/
raw_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT);
}
notrace void touch_softlockup_watchdog(void)
{
touch_softlockup_watchdog_sched();
wq_watchdog_touch(raw_smp_processor_id());
}
EXPORT_SYMBOL(touch_softlockup_watchdog);
void touch_all_softlockup_watchdogs(void)
{
int cpu;
/*
* watchdog_mutex cannpt be taken here, as this might be called
* from (soft)interrupt context, so the access to
* watchdog_allowed_cpumask might race with a concurrent update.
*
* The watchdog time stamp can race against a concurrent real
* update as well, the only side effect might be a cycle delay for
* the softlockup check.
*/
for_each_cpu(cpu, &watchdog_allowed_mask) {
per_cpu(watchdog_report_ts, cpu) = SOFTLOCKUP_DELAY_REPORT;
wq_watchdog_touch(cpu);
}
}
void touch_softlockup_watchdog_sync(void)
{
__this_cpu_write(softlockup_touch_sync, true);
__this_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT);
}
static int is_softlockup(unsigned long touch_ts,
unsigned long period_ts,
unsigned long now)
{
if ((watchdog_enabled & WATCHDOG_SOFTOCKUP_ENABLED) && watchdog_thresh) {
/*
* If period_ts has not been updated during a sample_period, then
* in the subsequent few sample_periods, period_ts might also not
* be updated, which could indicate a potential softlockup. In
* this case, if we suspect the cause of the potential softlockup
* might be interrupt storm, then we need to count the interrupts
* to find which interrupt is storming.
*/
if (time_after_eq(now, period_ts + get_softlockup_thresh() / NUM_SAMPLE_PERIODS) &&
need_counting_irqs())
start_counting_irqs();
/* Warn about unreasonable delays. */
if (time_after(now, period_ts + get_softlockup_thresh()))
return now - touch_ts;
}
return 0;
}
/* watchdog detector functions */
static DEFINE_PER_CPU(struct completion, softlockup_completion);
static DEFINE_PER_CPU(struct cpu_stop_work, softlockup_stop_work);
/*
* The watchdog feed function - touches the timestamp.
*
* It only runs once every sample_period seconds (4 seconds by
* default) to reset the softlockup timestamp. If this gets delayed
* for more than 2*watchdog_thresh seconds then the debug-printout
* triggers in watchdog_timer_fn().
*/
static int softlockup_fn(void *data)
{
update_touch_ts();
stop_counting_irqs();
complete(this_cpu_ptr(&softlockup_completion));
return 0;
}
/* watchdog kicker functions */
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
{
unsigned long touch_ts, period_ts, now;
struct pt_regs *regs = get_irq_regs();
int duration;
int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace;
unsigned long flags;
if (!watchdog_enabled)
return HRTIMER_NORESTART;
watchdog_hardlockup_kick();
/* kick the softlockup detector */
if (completion_done(this_cpu_ptr(&softlockup_completion))) {
reinit_completion(this_cpu_ptr(&softlockup_completion));
stop_one_cpu_nowait(smp_processor_id(),
softlockup_fn, NULL,
this_cpu_ptr(&softlockup_stop_work));
}
/* .. and repeat */
hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));
/*
* Read the current timestamp first. It might become invalid anytime
* when a virtual machine is stopped by the host or when the watchog
* is touched from NMI.
*/
now = get_timestamp();
/*
* If a virtual machine is stopped by the host it can look to
* the watchdog like a soft lockup. This function touches the watchdog.
*/
kvm_check_and_clear_guest_paused();
/*
* The stored timestamp is comparable with @now only when not touched.
* It might get touched anytime from NMI. Make sure that is_softlockup()
* uses the same (valid) value.
*/
period_ts = READ_ONCE(*this_cpu_ptr(&watchdog_report_ts));
update_cpustat();
/* Reset the interval when touched by known problematic code. */
if (period_ts == SOFTLOCKUP_DELAY_REPORT) {
if (unlikely(__this_cpu_read(softlockup_touch_sync))) {
/*
* If the time stamp was touched atomically
* make sure the scheduler tick is up to date.
*/
__this_cpu_write(softlockup_touch_sync, false);
sched_clock_tick();
}
update_report_ts();
return HRTIMER_RESTART;
}
/* Check for a softlockup. */
touch_ts = __this_cpu_read(watchdog_touch_ts);
duration = is_softlockup(touch_ts, period_ts, now);
if (unlikely(duration)) {
/*
* Prevent multiple soft-lockup reports if one cpu is already
* engaged in dumping all cpu back traces.
*/
if (softlockup_all_cpu_backtrace) {
if (test_and_set_bit_lock(0, &soft_lockup_nmi_warn))
return HRTIMER_RESTART;
}
/* Start period for the next softlockup warning. */
update_report_ts();
printk_cpu_sync_get_irqsave(flags);
pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
smp_processor_id(), duration,
current->comm, task_pid_nr(current));
report_cpu_status();
print_modules();
print_irqtrace_events(current);
if (regs)
show_regs(regs);
else
dump_stack();
printk_cpu_sync_put_irqrestore(flags);
if (softlockup_all_cpu_backtrace) {
trigger_allbutcpu_cpu_backtrace(smp_processor_id());
if (!softlockup_panic)
clear_bit_unlock(0, &soft_lockup_nmi_warn);
}
add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
if (softlockup_panic)
panic("softlockup: hung tasks");
}
return HRTIMER_RESTART;
}
static void watchdog_enable(unsigned int cpu)
{
struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
struct completion *done = this_cpu_ptr(&softlockup_completion);
WARN_ON_ONCE(cpu != smp_processor_id());
init_completion(done);
complete(done);
/*
* Start the timer first to prevent the hardlockup watchdog triggering
* before the timer has a chance to fire.
*/
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
hrtimer->function = watchdog_timer_fn;
hrtimer_start(hrtimer, ns_to_ktime(sample_period),
HRTIMER_MODE_REL_PINNED_HARD);
/* Initialize timestamp */
update_touch_ts();
/* Enable the hardlockup detector */
if (watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED)
watchdog_hardlockup_enable(cpu);
}
static void watchdog_disable(unsigned int cpu)
{
struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
WARN_ON_ONCE(cpu != smp_processor_id());
/*
* Disable the hardlockup detector first. That prevents that a large
* delay between disabling the timer and disabling the hardlockup
* detector causes a false positive.
*/
watchdog_hardlockup_disable(cpu);
hrtimer_cancel(hrtimer);
wait_for_completion(this_cpu_ptr(&softlockup_completion));
}
static int softlockup_stop_fn(void *data)
{
watchdog_disable(smp_processor_id());
return 0;
}
static void softlockup_stop_all(void)
{
int cpu;
if (!softlockup_initialized)
return;
for_each_cpu(cpu, &watchdog_allowed_mask)
smp_call_on_cpu(cpu, softlockup_stop_fn, NULL, false);
cpumask_clear(&watchdog_allowed_mask);
}
static int softlockup_start_fn(void *data)
{
watchdog_enable(smp_processor_id());
return 0;
}
static void softlockup_start_all(void)
{
int cpu;
cpumask_copy(&watchdog_allowed_mask, &watchdog_cpumask);
for_each_cpu(cpu, &watchdog_allowed_mask)
smp_call_on_cpu(cpu, softlockup_start_fn, NULL, false);
}
int lockup_detector_online_cpu(unsigned int cpu)
{
if (cpumask_test_cpu(cpu, &watchdog_allowed_mask))
watchdog_enable(cpu);
return 0;
}
int lockup_detector_offline_cpu(unsigned int cpu)
{
if (cpumask_test_cpu(cpu, &watchdog_allowed_mask))
watchdog_disable(cpu);
return 0;
}
static void __lockup_detector_reconfigure(void)
{
cpus_read_lock();
watchdog_hardlockup_stop();
softlockup_stop_all();
set_sample_period();
lockup_detector_update_enable();
if (watchdog_enabled && watchdog_thresh)
softlockup_start_all();
watchdog_hardlockup_start();
cpus_read_unlock();
/*
* Must be called outside the cpus locked section to prevent
* recursive locking in the perf code.
*/
__lockup_detector_cleanup();
}
void lockup_detector_reconfigure(void)
{
mutex_lock(&watchdog_mutex);
__lockup_detector_reconfigure();
mutex_unlock(&watchdog_mutex);
}
/*
* Create the watchdog infrastructure and configure the detector(s).
*/
static __init void lockup_detector_setup(void)
{
/*
* If sysctl is off and watchdog got disabled on the command line,
* nothing to do here.
*/
lockup_detector_update_enable();
if (!IS_ENABLED(CONFIG_SYSCTL) &&
!(watchdog_enabled && watchdog_thresh))
return;
mutex_lock(&watchdog_mutex);
__lockup_detector_reconfigure();
softlockup_initialized = true;
mutex_unlock(&watchdog_mutex);
}
#else /* CONFIG_SOFTLOCKUP_DETECTOR */
static void __lockup_detector_reconfigure(void)
{
cpus_read_lock();
watchdog_hardlockup_stop();
lockup_detector_update_enable();
watchdog_hardlockup_start();
cpus_read_unlock();
}
void lockup_detector_reconfigure(void)
{
__lockup_detector_reconfigure();
}
static inline void lockup_detector_setup(void)
{
__lockup_detector_reconfigure();
}
#endif /* !CONFIG_SOFTLOCKUP_DETECTOR */
static void __lockup_detector_cleanup(void)
{
lockdep_assert_held(&watchdog_mutex);
hardlockup_detector_perf_cleanup();
}
/**
* lockup_detector_cleanup - Cleanup after cpu hotplug or sysctl changes
*
* Caller must not hold the cpu hotplug rwsem.
*/
void lockup_detector_cleanup(void)
{
mutex_lock(&watchdog_mutex);
__lockup_detector_cleanup();
mutex_unlock(&watchdog_mutex);
}
/**
* lockup_detector_soft_poweroff - Interface to stop lockup detector(s)
*
* Special interface for parisc. It prevents lockup detector warnings from
* the default pm_poweroff() function which busy loops forever.
*/
void lockup_detector_soft_poweroff(void)
{
watchdog_enabled = 0;
}
#ifdef CONFIG_SYSCTL
/* Propagate any changes to the watchdog infrastructure */
static void proc_watchdog_update(void)
{
/* Remove impossible cpus to keep sysctl output clean. */
cpumask_and(&watchdog_cpumask, &watchdog_cpumask, cpu_possible_mask);
__lockup_detector_reconfigure();
}
/*
* common function for watchdog, nmi_watchdog and soft_watchdog parameter
*
* caller | table->data points to | 'which'
* -------------------|----------------------------------|-------------------------------
* proc_watchdog | watchdog_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED |
* | | WATCHDOG_SOFTOCKUP_ENABLED
* -------------------|----------------------------------|-------------------------------
* proc_nmi_watchdog | watchdog_hardlockup_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED
* -------------------|----------------------------------|-------------------------------
* proc_soft_watchdog | watchdog_softlockup_user_enabled | WATCHDOG_SOFTOCKUP_ENABLED
*/
static int proc_watchdog_common(int which, const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int err, old, *param = table->data;
mutex_lock(&watchdog_mutex);
if (!write) {
/*
* On read synchronize the userspace interface. This is a
* racy snapshot.
*/
*param = (watchdog_enabled & which) != 0;
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
} else {
old = READ_ONCE(*param);
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!err && old != READ_ONCE(*param))
proc_watchdog_update();
}
mutex_unlock(&watchdog_mutex);
return err;
}
/*
* /proc/sys/kernel/watchdog
*/
static int proc_watchdog(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED |
WATCHDOG_SOFTOCKUP_ENABLED,
table, write, buffer, lenp, ppos);
}
/*
* /proc/sys/kernel/nmi_watchdog
*/
static int proc_nmi_watchdog(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
if (!watchdog_hardlockup_available && write)
return -ENOTSUPP;
return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED,
table, write, buffer, lenp, ppos);
}
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
/*
* /proc/sys/kernel/soft_watchdog
*/
static int proc_soft_watchdog(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
return proc_watchdog_common(WATCHDOG_SOFTOCKUP_ENABLED,
table, write, buffer, lenp, ppos);
}
#endif
/*
* /proc/sys/kernel/watchdog_thresh
*/
static int proc_watchdog_thresh(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int err, old;
mutex_lock(&watchdog_mutex);
old = READ_ONCE(watchdog_thresh);
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!err && write && old != READ_ONCE(watchdog_thresh))
proc_watchdog_update();
mutex_unlock(&watchdog_mutex);
return err;
}
/*
* The cpumask is the mask of possible cpus that the watchdog can run
* on, not the mask of cpus it is actually running on. This allows the
* user to specify a mask that will include cpus that have not yet
* been brought online, if desired.
*/
static int proc_watchdog_cpumask(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int err;
mutex_lock(&watchdog_mutex);
err = proc_do_large_bitmap(table, write, buffer, lenp, ppos);
if (!err && write)
proc_watchdog_update();
mutex_unlock(&watchdog_mutex);
return err;
}
static const int sixty = 60;
static struct ctl_table watchdog_sysctls[] = {
{
.procname = "watchdog",
.data = &watchdog_user_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_watchdog,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "watchdog_thresh",
.data = &watchdog_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_watchdog_thresh,
.extra1 = SYSCTL_ZERO,
.extra2 = (void *)&sixty,
},
{
.procname = "watchdog_cpumask",
.data = &watchdog_cpumask_bits,
.maxlen = NR_CPUS,
.mode = 0644,
.proc_handler = proc_watchdog_cpumask,
},
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
{
.procname = "soft_watchdog",
.data = &watchdog_softlockup_user_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_soft_watchdog,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "softlockup_panic",
.data = &softlockup_panic,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#ifdef CONFIG_SMP
{
.procname = "softlockup_all_cpu_backtrace",
.data = &sysctl_softlockup_all_cpu_backtrace,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#endif /* CONFIG_SMP */
#endif
#ifdef CONFIG_HARDLOCKUP_DETECTOR
{
.procname = "hardlockup_panic",
.data = &hardlockup_panic,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#ifdef CONFIG_SMP
{
.procname = "hardlockup_all_cpu_backtrace",
.data = &sysctl_hardlockup_all_cpu_backtrace,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#endif /* CONFIG_SMP */
#endif
};
static struct ctl_table watchdog_hardlockup_sysctl[] = {
{
.procname = "nmi_watchdog",
.data = &watchdog_hardlockup_user_enabled,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_nmi_watchdog,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
};
static void __init watchdog_sysctl_init(void)
{
register_sysctl_init("kernel", watchdog_sysctls);
if (watchdog_hardlockup_available)
watchdog_hardlockup_sysctl[0].mode = 0644;
register_sysctl_init("kernel", watchdog_hardlockup_sysctl);
}
#else
#define watchdog_sysctl_init() do { } while (0)
#endif /* CONFIG_SYSCTL */
static void __init lockup_detector_delay_init(struct work_struct *work);
static bool allow_lockup_detector_init_retry __initdata;
static struct work_struct detector_work __initdata =
__WORK_INITIALIZER(detector_work, lockup_detector_delay_init);
static void __init lockup_detector_delay_init(struct work_struct *work)
{
int ret;
ret = watchdog_hardlockup_probe();
if (ret) {
if (ret == -ENODEV)
pr_info("NMI not fully supported\n");
else
pr_info("Delayed init of the lockup detector failed: %d\n", ret);
pr_info("Hard watchdog permanently disabled\n");
return;
}
allow_lockup_detector_init_retry = false;
watchdog_hardlockup_available = true;
lockup_detector_setup();
}
/*
* lockup_detector_retry_init - retry init lockup detector if possible.
*
* Retry hardlockup detector init. It is useful when it requires some
* functionality that has to be initialized later on a particular
* platform.
*/
void __init lockup_detector_retry_init(void)
{
/* Must be called before late init calls */
if (!allow_lockup_detector_init_retry)
return;
schedule_work(&detector_work);
}
/*
* Ensure that optional delayed hardlockup init is proceed before
* the init code and memory is freed.
*/
static int __init lockup_detector_check(void)
{
/* Prevent any later retry. */
allow_lockup_detector_init_retry = false;
/* Make sure no work is pending. */
flush_work(&detector_work);
watchdog_sysctl_init();
return 0;
}
late_initcall_sync(lockup_detector_check);
void __init lockup_detector_init(void)
{
if (tick_nohz_full_enabled())
pr_info("Disabling watchdog on nohz_full cores by default\n");
cpumask_copy(&watchdog_cpumask,
housekeeping_cpumask(HK_TYPE_TIMER));
if (!watchdog_hardlockup_probe())
watchdog_hardlockup_available = true;
else
allow_lockup_detector_init_retry = true;
lockup_detector_setup();
}