linux/scripts/verify_builtin_ranges.awk
Kris Van Hees ac7bd0945e scripts: add verifier script for builtin module range data
The modules.builtin.ranges offset range data for builtin modules is
generated at compile time based on the list of built-in modules and
the vmlinux.map and vmlinux.o.map linker maps.  This data can be used
to determine whether a symbol at a particular address belongs to
module code that was configured to be compiled into the kernel proper
as a built-in module (rather than as a standalone module).

This patch adds a script that uses the generated modules.builtin.ranges
data to annotate the symbols in the System.map with module names if
their address falls within a range that belongs to one or more built-in
modules.

It then processes the vmlinux.map (and if needed, vmlinux.o.map) to
verify the annotation:

  - For each top-level section:
     - For each object in the section:
        - Determine whether the object is part of a built-in module
          (using modules.builtin and the .*.cmd file used to compile
           the object as suggested in [0])
        - For each symbol in that object, verify that the built-in
          module association (or lack thereof) matches the annotation
          given to the symbol.

Signed-off-by: Kris Van Hees <kris.van.hees@oracle.com>
Reviewed-by: Nick Alcock <nick.alcock@oracle.com>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Tested-by: Sam James <sam@gentoo.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2024-09-20 09:21:52 +09:00

370 lines
9.1 KiB
Awk
Executable file

#!/usr/bin/gawk -f
# SPDX-License-Identifier: GPL-2.0
# verify_builtin_ranges.awk: Verify address range data for builtin modules
# Written by Kris Van Hees <kris.van.hees@oracle.com>
#
# Usage: verify_builtin_ranges.awk modules.builtin.ranges System.map \
# modules.builtin vmlinux.map vmlinux.o.map
#
# Return the module name(s) (if any) associated with the given object.
#
# If we have seen this object before, return information from the cache.
# Otherwise, retrieve it from the corresponding .cmd file.
#
function get_module_info(fn, mod, obj, s) {
if (fn in omod)
return omod[fn];
if (match(fn, /\/[^/]+$/) == 0)
return "";
obj = fn;
mod = "";
fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd";
if (getline s <fn == 1) {
if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) {
mod = substr(s, RSTART + 16, RLENGTH - 16);
gsub(/['"]/, "", mod);
} else if (match(s, /RUST_MODFILE=[^ ]+/) > 0)
mod = substr(s, RSTART + 13, RLENGTH - 13);
} else {
print "ERROR: Failed to read: " fn "\n\n" \
" For kernels built with O=<objdir>, cd to <objdir>\n" \
" and execute this script as ./source/scripts/..." \
>"/dev/stderr";
close(fn);
total = 0;
exit(1);
}
close(fn);
# A single module (common case) also reflects objects that are not part
# of a module. Some of those objects have names that are also a module
# name (e.g. core). We check the associated module file name, and if
# they do not match, the object is not part of a module.
if (mod !~ / /) {
if (!(mod in mods))
mod = "";
}
gsub(/([^/ ]*\/)+/, "", mod);
gsub(/-/, "_", mod);
# At this point, mod is a single (valid) module name, or a list of
# module names (that do not need validation).
omod[obj] = mod;
return mod;
}
# Return a representative integer value for a given hexadecimal address.
#
# Since all kernel addresses fall within the same memory region, we can safely
# strip off the first 6 hex digits before performing the hex-to-dec conversion,
# thereby avoiding integer overflows.
#
function addr2val(val) {
sub(/^0x/, "", val);
if (length(val) == 16)
val = substr(val, 5);
return strtonum("0x" val);
}
# Determine the kernel build directory to use (default is .).
#
BEGIN {
if (ARGC < 6) {
print "Syntax: verify_builtin_ranges.awk <ranges-file> <system-map>\n" \
" <builtin-file> <vmlinux-map> <vmlinux-o-map>\n" \
>"/dev/stderr";
total = 0;
exit(1);
}
}
# (1) Load the built-in module address range data.
#
ARGIND == 1 {
ranges[FNR] = $0;
rcnt++;
next;
}
# (2) Annotate System.map symbols with module names.
#
ARGIND == 2 {
addr = addr2val($1);
name = $3;
while (addr >= mod_eaddr) {
if (sect_symb) {
if (sect_symb != name)
next;
sect_base = addr - sect_off;
if (dbg)
printf "[%s] BASE (%s) %016x - %016x = %016x\n", sect_name, sect_symb, addr, sect_off, sect_base >"/dev/stderr";
sect_symb = 0;
}
if (++ridx > rcnt)
break;
$0 = ranges[ridx];
sub(/-/, " ");
if ($4 != "=") {
sub(/-/, " ");
mod_saddr = strtonum("0x" $2) + sect_base;
mod_eaddr = strtonum("0x" $3) + sect_base;
$1 = $2 = $3 = "";
sub(/^ +/, "");
mod_name = $0;
if (dbg)
printf "[%s] %s from %016x to %016x\n", sect_name, mod_name, mod_saddr, mod_eaddr >"/dev/stderr";
} else {
sect_name = $1;
sect_off = strtonum("0x" $2);
sect_symb = $5;
}
}
idx = addr"-"name;
if (addr >= mod_saddr && addr < mod_eaddr)
sym2mod[idx] = mod_name;
next;
}
# Once we are done annotating the System.map, we no longer need the ranges data.
#
FNR == 1 && ARGIND == 3 {
delete ranges;
}
# (3) Build a lookup map of built-in module names.
#
# Lines from modules.builtin will be like:
# kernel/crypto/lzo-rle.ko
# and we record the object name "crypto/lzo-rle".
#
ARGIND == 3 {
sub(/kernel\//, ""); # strip off "kernel/" prefix
sub(/\.ko$/, ""); # strip off .ko suffix
mods[$1] = 1;
next;
}
# (4) Get a list of symbols (per object).
#
# Symbols by object are read from vmlinux.map, with fallback to vmlinux.o.map
# if vmlinux is found to have inked in vmlinux.o.
#
# If we were able to get the data we need from vmlinux.map, there is no need to
# process vmlinux.o.map.
#
FNR == 1 && ARGIND == 5 && total > 0 {
if (dbg)
printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr";
exit;
}
# First determine whether we are dealing with a GNU ld or LLVM lld linker map.
#
ARGIND >= 4 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" {
map_is_lld = 1;
next;
}
# (LLD) Convert a section record fronm lld format to ld format.
#
ARGIND >= 4 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ {
$0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2;
}
# (LLD) Convert an object record from lld format to ld format.
#
ARGIND >= 4 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
if (/\.a\(/ && !/ vmlinux\.a\(/)
next;
gsub(/\)/, "");
sub(/:\(/, " ");
sub(/ vmlinux\.a\(/, " ");
$0 = " "$6 " 0x"$1 " 0x"$3 " " $5;
}
# (LLD) Convert a symbol record from lld format to ld format.
#
ARGIND >= 4 && map_is_lld && NF == 5 && $5 ~ /^[A-Za-z_][A-Za-z0-9_]*$/ {
$0 = " 0x" $1 " " $5;
}
# (LLD) We do not need any other ldd linker map records.
#
ARGIND >= 4 && map_is_lld && /^[0-9a-f]{16} / {
next;
}
# Handle section records with long section names (spilling onto a 2nd line).
#
ARGIND >= 4 && !map_is_lld && NF == 1 && /^[^ ]/ {
s = $0;
getline;
$0 = s " " $0;
}
# Next section - previous one is done.
#
ARGIND >= 4 && /^[^ ]/ {
sect = 0;
}
# Get the (top level) section name.
#
ARGIND >= 4 && /^\./ {
# Explicitly ignore a few sections that are not relevant here.
if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/)
next;
# Sections with a 0-address can be ignored as well (in vmlinux.map).
if (ARGIND == 4 && $2 ~ /^0x0+$/)
next;
sect = $1;
next;
}
# If we are not currently in a section we care about, ignore records.
#
!sect {
next;
}
# Handle object records with long section names (spilling onto a 2nd line).
#
ARGIND >= 4 && /^ [^ \*]/ && NF == 1 {
# If the section name is long, the remainder of the entry is found on
# the next line.
s = $0;
getline;
$0 = s " " $0;
}
# Objects linked in from static libraries are ignored.
# If the object is vmlinux.o, we need to consult vmlinux.o.map for per-object
# symbol information
#
ARGIND == 4 && /^ [^ ]/ && NF == 4 {
if ($4 ~ /\.a\(/)
next;
idx = sect":"$1;
if (!(idx in sect_addend)) {
sect_addend[idx] = addr2val($2);
if (dbg)
printf "ADDEND %s = %016x\n", idx, sect_addend[idx] >"/dev/stderr";
}
if ($4 == "vmlinux.o") {
need_o_map = 1;
next;
}
}
# If data from vmlinux.o.map is needed, we only process section and object
# records from vmlinux.map to determine which section we need to pay attention
# to in vmlinux.o.map. So skip everything else from vmlinux.map.
#
ARGIND == 4 && need_o_map {
next;
}
# Get module information for the current object.
#
ARGIND >= 4 && /^ [^ ]/ && NF == 4 {
msect = $1;
mod_name = get_module_info($4);
mod_eaddr = addr2val($2) + addr2val($3);
next;
}
# Process a symbol record.
#
# Evaluate the module information obtained from vmlinux.map (or vmlinux.o.map)
# as follows:
# - For all symbols in a given object:
# - If the symbol is annotated with the same module name(s) that the object
# belongs to, count it as a match.
# - Otherwise:
# - If the symbol is known to have duplicates of which at least one is
# in a built-in module, disregard it.
# - If the symbol us not annotated with any module name(s) AND the
# object belongs to built-in modules, count it as missing.
# - Otherwise, count it as a mismatch.
#
ARGIND >= 4 && /^ / && NF == 2 && $1 ~ /^0x/ {
idx = sect":"msect;
if (!(idx in sect_addend))
next;
addr = addr2val($1);
# Handle the rare but annoying case where a 0-size symbol is placed at
# the byte *after* the module range. Based on vmlinux.map it will be
# considered part of the current object, but it falls just beyond the
# module address range. Unfortunately, its address could be at the
# start of another built-in module, so the only safe thing to do is to
# ignore it.
if (mod_name && addr == mod_eaddr)
next;
# If we are processing vmlinux.o.map, we need to apply the base address
# of the section to the relative address on the record.
#
if (ARGIND == 5)
addr += sect_addend[idx];
idx = addr"-"$2;
mod = "";
if (idx in sym2mod) {
mod = sym2mod[idx];
if (sym2mod[idx] == mod_name) {
mod_matches++;
matches++;
} else if (mod_name == "") {
print $2 " in " mod " (should NOT be)";
mismatches++;
} else {
print $2 " in " mod " (should be " mod_name ")";
mismatches++;
}
} else if (mod_name != "") {
print $2 " should be in " mod_name;
missing++;
} else
matches++;
total++;
next;
}
# Issue the comparison report.
#
END {
if (total) {
printf "Verification of %s:\n", ARGV[1];
printf " Correct matches: %6d (%d%% of total)\n", matches, 100 * matches / total;
printf " Module matches: %6d (%d%% of matches)\n", mod_matches, 100 * mod_matches / matches;
printf " Mismatches: %6d (%d%% of total)\n", mismatches, 100 * mismatches / total;
printf " Missing: %6d (%d%% of total)\n", missing, 100 * missing / total;
if (mismatches || missing)
exit(1);
}
}