linux/drivers/pwm/pwm-lpss.c
Uwe Kleine-König 05013062a8 pwm: lpss-*: Make use of devm_pwmchip_alloc() function
This prepares the pwm-lpss drivers to further changes of the pwm core
outlined in the commit introducing devm_pwmchip_alloc(). There is no
intended semantical change and the driver should behave as before.

Reviewed-by: Andy Shevchenko <andy@kernel.org>
Link: https://lore.kernel.org/r/b567ab5dd992e361eb884fa6c2cac11be9c7dde3.1707900770.git.u.kleine-koenig@pengutronix.de
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
2024-02-19 11:04:11 +01:00

292 lines
7.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Low Power Subsystem PWM controller driver
*
* Copyright (C) 2014, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
* Author: Chew Kean Ho <kean.ho.chew@intel.com>
* Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
* Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
* Author: Alan Cox <alan@linux.intel.com>
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/time.h>
#define DEFAULT_SYMBOL_NAMESPACE PWM_LPSS
#include "pwm-lpss.h"
#define PWM 0x00000000
#define PWM_ENABLE BIT(31)
#define PWM_SW_UPDATE BIT(30)
#define PWM_BASE_UNIT_SHIFT 8
#define PWM_ON_TIME_DIV_MASK GENMASK(7, 0)
/* Size of each PWM register space if multiple */
#define PWM_SIZE 0x400
/* BayTrail */
const struct pwm_lpss_boardinfo pwm_lpss_byt_info = {
.clk_rate = 25000000,
.npwm = 1,
.base_unit_bits = 16,
};
EXPORT_SYMBOL_GPL(pwm_lpss_byt_info);
/* Braswell */
const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = {
.clk_rate = 19200000,
.npwm = 1,
.base_unit_bits = 16,
.other_devices_aml_touches_pwm_regs = true,
};
EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info);
/* Broxton */
const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = {
.clk_rate = 19200000,
.npwm = 4,
.base_unit_bits = 22,
.bypass = true,
};
EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info);
/* Tangier */
const struct pwm_lpss_boardinfo pwm_lpss_tng_info = {
.clk_rate = 19200000,
.npwm = 4,
.base_unit_bits = 22,
};
EXPORT_SYMBOL_GPL(pwm_lpss_tng_info);
static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
}
static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
}
static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
const unsigned int ms = 500 * USEC_PER_MSEC;
u32 val;
int err;
/*
* PWM Configuration register has SW_UPDATE bit that is set when a new
* configuration is written to the register. The bit is automatically
* cleared at the start of the next output cycle by the IP block.
*
* If one writes a new configuration to the register while it still has
* the bit enabled, PWM may freeze. That is, while one can still write
* to the register, it won't have an effect. Thus, we try to sleep long
* enough that the bit gets cleared and make sure the bit is not
* enabled while we update the configuration.
*/
err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
if (err)
dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE was not cleared\n");
return err;
}
static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
{
if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE is still set, skipping update\n");
return -EBUSY;
}
return 0;
}
static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
unsigned long long on_time_div;
unsigned long c = lpwm->info->clk_rate, base_unit_range;
unsigned long long base_unit, freq = NSEC_PER_SEC;
u32 ctrl;
do_div(freq, period_ns);
/*
* The equation is:
* base_unit = round(base_unit_range * freq / c)
*/
base_unit_range = BIT(lpwm->info->base_unit_bits);
freq *= base_unit_range;
base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
/* base_unit must not be 0 and we also want to avoid overflowing it */
base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
on_time_div = 255ULL * duty_ns;
do_div(on_time_div, period_ns);
on_time_div = 255ULL - on_time_div;
ctrl = pwm_lpss_read(pwm);
ctrl &= ~PWM_ON_TIME_DIV_MASK;
ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
ctrl |= on_time_div;
pwm_lpss_write(pwm, ctrl);
pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
}
static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
{
if (cond)
pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
}
static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
struct pwm_device *pwm,
const struct pwm_state *state)
{
int ret;
ret = pwm_lpss_is_updating(pwm);
if (ret)
return ret;
pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
ret = pwm_lpss_wait_for_update(pwm);
if (ret)
return ret;
pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
return 0;
}
static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pwm_lpss_chip *lpwm = to_lpwm(chip);
int ret = 0;
if (state->enabled) {
if (!pwm_is_enabled(pwm)) {
pm_runtime_get_sync(pwmchip_parent(chip));
ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
if (ret)
pm_runtime_put(pwmchip_parent(chip));
} else {
ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
}
} else if (pwm_is_enabled(pwm)) {
pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
pm_runtime_put(pwmchip_parent(chip));
}
return ret;
}
static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct pwm_lpss_chip *lpwm = to_lpwm(chip);
unsigned long base_unit_range;
unsigned long long base_unit, freq, on_time_div;
u32 ctrl;
pm_runtime_get_sync(pwmchip_parent(chip));
base_unit_range = BIT(lpwm->info->base_unit_bits);
ctrl = pwm_lpss_read(pwm);
on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
freq = base_unit * lpwm->info->clk_rate;
do_div(freq, base_unit_range);
if (freq == 0)
state->period = NSEC_PER_SEC;
else
state->period = NSEC_PER_SEC / (unsigned long)freq;
on_time_div *= state->period;
do_div(on_time_div, 255);
state->duty_cycle = on_time_div;
state->polarity = PWM_POLARITY_NORMAL;
state->enabled = !!(ctrl & PWM_ENABLE);
pm_runtime_put(pwmchip_parent(chip));
return 0;
}
static const struct pwm_ops pwm_lpss_ops = {
.apply = pwm_lpss_apply,
.get_state = pwm_lpss_get_state,
};
struct pwm_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base,
const struct pwm_lpss_boardinfo *info)
{
struct pwm_lpss_chip *lpwm;
struct pwm_chip *chip;
unsigned long c;
int i, ret;
u32 ctrl;
if (WARN_ON(info->npwm > LPSS_MAX_PWMS))
return ERR_PTR(-ENODEV);
chip = devm_pwmchip_alloc(dev, info->npwm, sizeof(*lpwm));
if (IS_ERR(chip))
return chip;
lpwm = to_lpwm(chip);
lpwm->regs = base;
lpwm->info = info;
c = lpwm->info->clk_rate;
if (!c)
return ERR_PTR(-EINVAL);
chip->ops = &pwm_lpss_ops;
ret = devm_pwmchip_add(dev, chip);
if (ret) {
dev_err(dev, "failed to add PWM chip: %d\n", ret);
return ERR_PTR(ret);
}
for (i = 0; i < lpwm->info->npwm; i++) {
ctrl = pwm_lpss_read(&chip->pwms[i]);
if (ctrl & PWM_ENABLE)
pm_runtime_get(dev);
}
return chip;
}
EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe);
MODULE_DESCRIPTION("PWM driver for Intel LPSS");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_LICENSE("GPL v2");