linux/mm/mmap.c
Lorenzo Stoakes 74874c5793 mm/mmap: correct error handling in mmap_region()
Commit f8d112a4e6 ("mm/mmap: avoid zeroing vma tree in mmap_region()")
changed how error handling is performed in mmap_region().

The error value defaults to -ENOMEM, but then gets reassigned immediately
to the result of vms_gather_munmap_vmas() if we are performing a MAP_FIXED
mapping over existing VMAs (and thus unmapping them).

This overwrites the error value, potentially clearing it.

After this, we invoke may_expand_vm() and possibly vm_area_alloc(), and
check to see if they failed. If they do so, then we perform error-handling
logic, but importantly, we do NOT update the error code.

This means that, if vms_gather_munmap_vmas() succeeds, but one of these
calls does not, the function will return indicating no error, but rather an
address value of zero, which is entirely incorrect.

Correct this and avoid future confusion by strictly setting error on each
and every occasion we jump to the error handling logic, and set the error
code immediately prior to doing so.

This way we can see at a glance that the error code is always correct.

Many thanks to Vegard Nossum who spotted this issue in discussion around
this problem.

Link: https://lkml.kernel.org/r/20241002073932.13482-1-lorenzo.stoakes@oracle.com
Fixes: f8d112a4e6 ("mm/mmap: avoid zeroing vma tree in mmap_region()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Vegard Nossum <vegard.nossum@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-17 00:28:05 -07:00

2336 lines
60 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/mmap.c
*
* Written by obz.
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/capability.h>
#include <linux/init.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <linux/profile.h>
#include <linux/export.h>
#include <linux/mount.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
#include <linux/mmdebug.h>
#include <linux/perf_event.h>
#include <linux/audit.h>
#include <linux/khugepaged.h>
#include <linux/uprobes.h>
#include <linux/notifier.h>
#include <linux/memory.h>
#include <linux/printk.h>
#include <linux/userfaultfd_k.h>
#include <linux/moduleparam.h>
#include <linux/pkeys.h>
#include <linux/oom.h>
#include <linux/sched/mm.h>
#include <linux/ksm.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#define CREATE_TRACE_POINTS
#include <trace/events/mmap.h>
#include "internal.h"
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
#endif
static bool ignore_rlimit_data;
core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
/* Update vma->vm_page_prot to reflect vma->vm_flags. */
void vma_set_page_prot(struct vm_area_struct *vma)
{
unsigned long vm_flags = vma->vm_flags;
pgprot_t vm_page_prot;
vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
if (vma_wants_writenotify(vma, vm_page_prot)) {
vm_flags &= ~VM_SHARED;
vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
}
/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
}
/*
* check_brk_limits() - Use platform specific check of range & verify mlock
* limits.
* @addr: The address to check
* @len: The size of increase.
*
* Return: 0 on success.
*/
static int check_brk_limits(unsigned long addr, unsigned long len)
{
unsigned long mapped_addr;
mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
if (IS_ERR_VALUE(mapped_addr))
return mapped_addr;
return mlock_future_ok(current->mm, current->mm->def_flags, len)
? 0 : -EAGAIN;
}
static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk, unsigned long, brk)
{
unsigned long newbrk, oldbrk, origbrk;
struct mm_struct *mm = current->mm;
struct vm_area_struct *brkvma, *next = NULL;
unsigned long min_brk;
bool populate = false;
LIST_HEAD(uf);
struct vma_iterator vmi;
if (mmap_write_lock_killable(mm))
return -EINTR;
origbrk = mm->brk;
#ifdef CONFIG_COMPAT_BRK
/*
* CONFIG_COMPAT_BRK can still be overridden by setting
* randomize_va_space to 2, which will still cause mm->start_brk
* to be arbitrarily shifted
*/
if (current->brk_randomized)
min_brk = mm->start_brk;
else
min_brk = mm->end_data;
#else
min_brk = mm->start_brk;
#endif
if (brk < min_brk)
goto out;
/*
* Check against rlimit here. If this check is done later after the test
* of oldbrk with newbrk then it can escape the test and let the data
* segment grow beyond its set limit the in case where the limit is
* not page aligned -Ram Gupta
*/
if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
mm->end_data, mm->start_data))
goto out;
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk) {
mm->brk = brk;
goto success;
}
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
/* Search one past newbrk */
vma_iter_init(&vmi, mm, newbrk);
brkvma = vma_find(&vmi, oldbrk);
if (!brkvma || brkvma->vm_start >= oldbrk)
goto out; /* mapping intersects with an existing non-brk vma. */
/*
* mm->brk must be protected by write mmap_lock.
* do_vmi_align_munmap() will drop the lock on success, so
* update it before calling do_vma_munmap().
*/
mm->brk = brk;
if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
/* unlock = */ true))
goto out;
goto success_unlocked;
}
if (check_brk_limits(oldbrk, newbrk - oldbrk))
goto out;
/*
* Only check if the next VMA is within the stack_guard_gap of the
* expansion area
*/
vma_iter_init(&vmi, mm, oldbrk);
next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
goto out;
brkvma = vma_prev_limit(&vmi, mm->start_brk);
/* Ok, looks good - let it rip. */
if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
goto out;
mm->brk = brk;
if (mm->def_flags & VM_LOCKED)
populate = true;
success:
mmap_write_unlock(mm);
success_unlocked:
userfaultfd_unmap_complete(mm, &uf);
if (populate)
mm_populate(oldbrk, newbrk - oldbrk);
return brk;
out:
mm->brk = origbrk;
mmap_write_unlock(mm);
return origbrk;
}
/*
* If a hint addr is less than mmap_min_addr change hint to be as
* low as possible but still greater than mmap_min_addr
*/
static inline unsigned long round_hint_to_min(unsigned long hint)
{
hint &= PAGE_MASK;
if (((void *)hint != NULL) &&
(hint < mmap_min_addr))
return PAGE_ALIGN(mmap_min_addr);
return hint;
}
bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
unsigned long bytes)
{
unsigned long locked_pages, limit_pages;
if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
return true;
locked_pages = bytes >> PAGE_SHIFT;
locked_pages += mm->locked_vm;
limit_pages = rlimit(RLIMIT_MEMLOCK);
limit_pages >>= PAGE_SHIFT;
return locked_pages <= limit_pages;
}
static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
{
if (S_ISREG(inode->i_mode))
return MAX_LFS_FILESIZE;
if (S_ISBLK(inode->i_mode))
return MAX_LFS_FILESIZE;
if (S_ISSOCK(inode->i_mode))
return MAX_LFS_FILESIZE;
/* Special "we do even unsigned file positions" case */
if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
return 0;
/* Yes, random drivers might want more. But I'm tired of buggy drivers */
return ULONG_MAX;
}
static inline bool file_mmap_ok(struct file *file, struct inode *inode,
unsigned long pgoff, unsigned long len)
{
u64 maxsize = file_mmap_size_max(file, inode);
if (maxsize && len > maxsize)
return false;
maxsize -= len;
if (pgoff > maxsize >> PAGE_SHIFT)
return false;
return true;
}
/*
* The caller must write-lock current->mm->mmap_lock.
*/
unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, vm_flags_t vm_flags,
unsigned long pgoff, unsigned long *populate,
struct list_head *uf)
{
struct mm_struct *mm = current->mm;
int pkey = 0;
*populate = 0;
if (!len)
return -EINVAL;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
* (the exception is when the underlying filesystem is noexec
* mounted, in which case we don't add PROT_EXEC.)
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && path_noexec(&file->f_path)))
prot |= PROT_EXEC;
/* force arch specific MAP_FIXED handling in get_unmapped_area */
if (flags & MAP_FIXED_NOREPLACE)
flags |= MAP_FIXED;
if (!(flags & MAP_FIXED))
addr = round_hint_to_min(addr);
/* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
/*
* addr is returned from get_unmapped_area,
* There are two cases:
* 1> MAP_FIXED == false
* unallocated memory, no need to check sealing.
* 1> MAP_FIXED == true
* sealing is checked inside mmap_region when
* do_vmi_munmap is called.
*/
if (prot == PROT_EXEC) {
pkey = execute_only_pkey(mm);
if (pkey < 0)
pkey = 0;
}
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
if (IS_ERR_VALUE(addr))
return addr;
if (flags & MAP_FIXED_NOREPLACE) {
if (find_vma_intersection(mm, addr, addr + len))
return -EEXIST;
}
if (flags & MAP_LOCKED)
if (!can_do_mlock())
return -EPERM;
if (!mlock_future_ok(mm, vm_flags, len))
return -EAGAIN;
if (file) {
struct inode *inode = file_inode(file);
unsigned long flags_mask;
if (!file_mmap_ok(file, inode, pgoff, len))
return -EOVERFLOW;
flags_mask = LEGACY_MAP_MASK;
if (file->f_op->fop_flags & FOP_MMAP_SYNC)
flags_mask |= MAP_SYNC;
switch (flags & MAP_TYPE) {
case MAP_SHARED:
/*
* Force use of MAP_SHARED_VALIDATE with non-legacy
* flags. E.g. MAP_SYNC is dangerous to use with
* MAP_SHARED as you don't know which consistency model
* you will get. We silently ignore unsupported flags
* with MAP_SHARED to preserve backward compatibility.
*/
flags &= LEGACY_MAP_MASK;
fallthrough;
case MAP_SHARED_VALIDATE:
if (flags & ~flags_mask)
return -EOPNOTSUPP;
if (prot & PROT_WRITE) {
if (!(file->f_mode & FMODE_WRITE))
return -EACCES;
if (IS_SWAPFILE(file->f_mapping->host))
return -ETXTBSY;
}
/*
* Make sure we don't allow writing to an append-only
* file..
*/
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
fallthrough;
case MAP_PRIVATE:
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (path_noexec(&file->f_path)) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (!file->f_op->mmap)
return -ENODEV;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
break;
default:
return -EINVAL;
}
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
/*
* Ignore pgoff.
*/
pgoff = 0;
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_DROPPABLE:
if (VM_DROPPABLE == VM_NONE)
return -ENOTSUPP;
/*
* A locked or stack area makes no sense to be droppable.
*
* Also, since droppable pages can just go away at any time
* it makes no sense to copy them on fork or dump them.
*
* And don't attempt to combine with hugetlb for now.
*/
if (flags & (MAP_LOCKED | MAP_HUGETLB))
return -EINVAL;
if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
return -EINVAL;
vm_flags |= VM_DROPPABLE;
/*
* If the pages can be dropped, then it doesn't make
* sense to reserve them.
*/
vm_flags |= VM_NORESERVE;
/*
* Likewise, they're volatile enough that they
* shouldn't survive forks or coredumps.
*/
vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
fallthrough;
case MAP_PRIVATE:
/*
* Set pgoff according to addr for anon_vma.
*/
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if (flags & MAP_NORESERVE) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
if (!IS_ERR_VALUE(addr) &&
((vm_flags & VM_LOCKED) ||
(flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
*populate = len;
return addr;
}
unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags,
unsigned long fd, unsigned long pgoff)
{
struct file *file = NULL;
unsigned long retval;
if (!(flags & MAP_ANONYMOUS)) {
audit_mmap_fd(fd, flags);
file = fget(fd);
if (!file)
return -EBADF;
if (is_file_hugepages(file)) {
len = ALIGN(len, huge_page_size(hstate_file(file)));
} else if (unlikely(flags & MAP_HUGETLB)) {
retval = -EINVAL;
goto out_fput;
}
} else if (flags & MAP_HUGETLB) {
struct hstate *hs;
hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
if (!hs)
return -EINVAL;
len = ALIGN(len, huge_page_size(hs));
/*
* VM_NORESERVE is used because the reservations will be
* taken when vm_ops->mmap() is called
*/
file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
VM_NORESERVE,
HUGETLB_ANONHUGE_INODE,
(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
if (IS_ERR(file))
return PTR_ERR(file);
}
retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
out_fput:
if (file)
fput(file);
return retval;
}
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
}
#ifdef __ARCH_WANT_SYS_OLD_MMAP
struct mmap_arg_struct {
unsigned long addr;
unsigned long len;
unsigned long prot;
unsigned long flags;
unsigned long fd;
unsigned long offset;
};
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
{
struct mmap_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (offset_in_page(a.offset))
return -EINVAL;
return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
a.offset >> PAGE_SHIFT);
}
#endif /* __ARCH_WANT_SYS_OLD_MMAP */
/*
* We account for memory if it's a private writeable mapping,
* not hugepages and VM_NORESERVE wasn't set.
*/
static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
{
/*
* hugetlb has its own accounting separate from the core VM
* VM_HUGETLB may not be set yet so we cannot check for that flag.
*/
if (file && is_file_hugepages(file))
return false;
return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
}
/**
* unmapped_area() - Find an area between the low_limit and the high_limit with
* the correct alignment and offset, all from @info. Note: current->mm is used
* for the search.
*
* @info: The unmapped area information including the range [low_limit -
* high_limit), the alignment offset and mask.
*
* Return: A memory address or -ENOMEM.
*/
static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
{
unsigned long length, gap;
unsigned long low_limit, high_limit;
struct vm_area_struct *tmp;
VMA_ITERATOR(vmi, current->mm, 0);
/* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask + info->start_gap;
if (length < info->length)
return -ENOMEM;
low_limit = info->low_limit;
if (low_limit < mmap_min_addr)
low_limit = mmap_min_addr;
high_limit = info->high_limit;
retry:
if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
return -ENOMEM;
/*
* Adjust for the gap first so it doesn't interfere with the
* later alignment. The first step is the minimum needed to
* fulill the start gap, the next steps is the minimum to align
* that. It is the minimum needed to fulill both.
*/
gap = vma_iter_addr(&vmi) + info->start_gap;
gap += (info->align_offset - gap) & info->align_mask;
tmp = vma_next(&vmi);
if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
if (vm_start_gap(tmp) < gap + length - 1) {
low_limit = tmp->vm_end;
vma_iter_reset(&vmi);
goto retry;
}
} else {
tmp = vma_prev(&vmi);
if (tmp && vm_end_gap(tmp) > gap) {
low_limit = vm_end_gap(tmp);
vma_iter_reset(&vmi);
goto retry;
}
}
return gap;
}
/**
* unmapped_area_topdown() - Find an area between the low_limit and the
* high_limit with the correct alignment and offset at the highest available
* address, all from @info. Note: current->mm is used for the search.
*
* @info: The unmapped area information including the range [low_limit -
* high_limit), the alignment offset and mask.
*
* Return: A memory address or -ENOMEM.
*/
static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
{
unsigned long length, gap, gap_end;
unsigned long low_limit, high_limit;
struct vm_area_struct *tmp;
VMA_ITERATOR(vmi, current->mm, 0);
/* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask + info->start_gap;
if (length < info->length)
return -ENOMEM;
low_limit = info->low_limit;
if (low_limit < mmap_min_addr)
low_limit = mmap_min_addr;
high_limit = info->high_limit;
retry:
if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
return -ENOMEM;
gap = vma_iter_end(&vmi) - info->length;
gap -= (gap - info->align_offset) & info->align_mask;
gap_end = vma_iter_end(&vmi);
tmp = vma_next(&vmi);
if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
if (vm_start_gap(tmp) < gap_end) {
high_limit = vm_start_gap(tmp);
vma_iter_reset(&vmi);
goto retry;
}
} else {
tmp = vma_prev(&vmi);
if (tmp && vm_end_gap(tmp) > gap) {
high_limit = tmp->vm_start;
vma_iter_reset(&vmi);
goto retry;
}
}
return gap;
}
/*
* Determine if the allocation needs to ensure that there is no
* existing mapping within it's guard gaps, for use as start_gap.
*/
static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
{
if (vm_flags & VM_SHADOW_STACK)
return PAGE_SIZE;
return 0;
}
/*
* Search for an unmapped address range.
*
* We are looking for a range that:
* - does not intersect with any VMA;
* - is contained within the [low_limit, high_limit) interval;
* - is at least the desired size.
* - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
*/
unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
{
unsigned long addr;
if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
addr = unmapped_area_topdown(info);
else
addr = unmapped_area(info);
trace_vm_unmapped_area(addr, info);
return addr;
}
/* Get an address range which is currently unmapped.
* For shmat() with addr=0.
*
* Ugly calling convention alert:
* Return value with the low bits set means error value,
* ie
* if (ret & ~PAGE_MASK)
* error = ret;
*
* This function "knows" that -ENOMEM has the bits set.
*/
unsigned long
generic_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags, vm_flags_t vm_flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
struct vm_unmapped_area_info info = {};
const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
if (len > mmap_end - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma_prev(mm, addr, &prev);
if (mmap_end - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)) &&
(!prev || addr >= vm_end_gap(prev)))
return addr;
}
info.length = len;
info.low_limit = mm->mmap_base;
info.high_limit = mmap_end;
info.start_gap = stack_guard_placement(vm_flags);
return vm_unmapped_area(&info);
}
#ifndef HAVE_ARCH_UNMAPPED_AREA
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags, vm_flags_t vm_flags)
{
return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
vm_flags);
}
#endif
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*/
unsigned long
generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags, vm_flags_t vm_flags)
{
struct vm_area_struct *vma, *prev;
struct mm_struct *mm = current->mm;
struct vm_unmapped_area_info info = {};
const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
/* requested length too big for entire address space */
if (len > mmap_end - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma_prev(mm, addr, &prev);
if (mmap_end - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)) &&
(!prev || addr >= vm_end_gap(prev)))
return addr;
}
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = PAGE_SIZE;
info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
info.start_gap = stack_guard_placement(vm_flags);
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (offset_in_page(addr)) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = mmap_end;
addr = vm_unmapped_area(&info);
}
return addr;
}
#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags, vm_flags_t vm_flags)
{
return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
vm_flags);
}
#endif
unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags,
vm_flags_t vm_flags)
{
if (test_bit(MMF_TOPDOWN, &mm->flags))
return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
flags, vm_flags);
return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
}
unsigned long
__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
{
unsigned long (*get_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long)
= NULL;
unsigned long error = arch_mmap_check(addr, len, flags);
if (error)
return error;
/* Careful about overflows.. */
if (len > TASK_SIZE)
return -ENOMEM;
if (file) {
if (file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
} else if (flags & MAP_SHARED) {
/*
* mmap_region() will call shmem_zero_setup() to create a file,
* so use shmem's get_unmapped_area in case it can be huge.
*/
get_area = shmem_get_unmapped_area;
}
/* Always treat pgoff as zero for anonymous memory. */
if (!file)
pgoff = 0;
if (get_area) {
addr = get_area(file, addr, len, pgoff, flags);
} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
/* Ensures that larger anonymous mappings are THP aligned. */
addr = thp_get_unmapped_area_vmflags(file, addr, len,
pgoff, flags, vm_flags);
} else {
addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
pgoff, flags, vm_flags);
}
if (IS_ERR_VALUE(addr))
return addr;
if (addr > TASK_SIZE - len)
return -ENOMEM;
if (offset_in_page(addr))
return -EINVAL;
error = security_mmap_addr(addr);
return error ? error : addr;
}
unsigned long
mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
if (test_bit(MMF_TOPDOWN, &mm->flags))
return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
}
EXPORT_SYMBOL(mm_get_unmapped_area);
/**
* find_vma_intersection() - Look up the first VMA which intersects the interval
* @mm: The process address space.
* @start_addr: The inclusive start user address.
* @end_addr: The exclusive end user address.
*
* Returns: The first VMA within the provided range, %NULL otherwise. Assumes
* start_addr < end_addr.
*/
struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
unsigned long start_addr,
unsigned long end_addr)
{
unsigned long index = start_addr;
mmap_assert_locked(mm);
return mt_find(&mm->mm_mt, &index, end_addr - 1);
}
EXPORT_SYMBOL(find_vma_intersection);
/**
* find_vma() - Find the VMA for a given address, or the next VMA.
* @mm: The mm_struct to check
* @addr: The address
*
* Returns: The VMA associated with addr, or the next VMA.
* May return %NULL in the case of no VMA at addr or above.
*/
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
unsigned long index = addr;
mmap_assert_locked(mm);
return mt_find(&mm->mm_mt, &index, ULONG_MAX);
}
EXPORT_SYMBOL(find_vma);
/**
* find_vma_prev() - Find the VMA for a given address, or the next vma and
* set %pprev to the previous VMA, if any.
* @mm: The mm_struct to check
* @addr: The address
* @pprev: The pointer to set to the previous VMA
*
* Note that RCU lock is missing here since the external mmap_lock() is used
* instead.
*
* Returns: The VMA associated with @addr, or the next vma.
* May return %NULL in the case of no vma at addr or above.
*/
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)
{
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, addr);
vma = vma_iter_load(&vmi);
*pprev = vma_prev(&vmi);
if (!vma)
vma = vma_next(&vmi);
return vma;
}
/*
* Verify that the stack growth is acceptable and
* update accounting. This is shared with both the
* grow-up and grow-down cases.
*/
static int acct_stack_growth(struct vm_area_struct *vma,
unsigned long size, unsigned long grow)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long new_start;
/* address space limit tests */
if (!may_expand_vm(mm, vma->vm_flags, grow))
return -ENOMEM;
/* Stack limit test */
if (size > rlimit(RLIMIT_STACK))
return -ENOMEM;
/* mlock limit tests */
if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
return -ENOMEM;
/* Check to ensure the stack will not grow into a hugetlb-only region */
new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
vma->vm_end - size;
if (is_hugepage_only_range(vma->vm_mm, new_start, size))
return -EFAULT;
/*
* Overcommit.. This must be the final test, as it will
* update security statistics.
*/
if (security_vm_enough_memory_mm(mm, grow))
return -ENOMEM;
return 0;
}
#if defined(CONFIG_STACK_GROWSUP)
/*
* PA-RISC uses this for its stack.
* vma is the last one with address > vma->vm_end. Have to extend vma.
*/
static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *next;
unsigned long gap_addr;
int error = 0;
VMA_ITERATOR(vmi, mm, vma->vm_start);
if (!(vma->vm_flags & VM_GROWSUP))
return -EFAULT;
/* Guard against exceeding limits of the address space. */
address &= PAGE_MASK;
if (address >= (TASK_SIZE & PAGE_MASK))
return -ENOMEM;
address += PAGE_SIZE;
/* Enforce stack_guard_gap */
gap_addr = address + stack_guard_gap;
/* Guard against overflow */
if (gap_addr < address || gap_addr > TASK_SIZE)
gap_addr = TASK_SIZE;
next = find_vma_intersection(mm, vma->vm_end, gap_addr);
if (next && vma_is_accessible(next)) {
if (!(next->vm_flags & VM_GROWSUP))
return -ENOMEM;
/* Check that both stack segments have the same anon_vma? */
}
if (next)
vma_iter_prev_range_limit(&vmi, address);
vma_iter_config(&vmi, vma->vm_start, address);
if (vma_iter_prealloc(&vmi, vma))
return -ENOMEM;
/* We must make sure the anon_vma is allocated. */
if (unlikely(anon_vma_prepare(vma))) {
vma_iter_free(&vmi);
return -ENOMEM;
}
/* Lock the VMA before expanding to prevent concurrent page faults */
vma_start_write(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_lock in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
anon_vma_lock_write(vma->anon_vma);
/* Somebody else might have raced and expanded it already */
if (address > vma->vm_end) {
unsigned long size, grow;
size = address - vma->vm_start;
grow = (address - vma->vm_end) >> PAGE_SHIFT;
error = -ENOMEM;
if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
/*
* We only hold a shared mmap_lock lock here, so
* we need to protect against concurrent vma
* expansions. anon_vma_lock_write() doesn't
* help here, as we don't guarantee that all
* growable vmas in a mm share the same root
* anon vma. So, we reuse mm->page_table_lock
* to guard against concurrent vma expansions.
*/
spin_lock(&mm->page_table_lock);
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, grow);
anon_vma_interval_tree_pre_update_vma(vma);
vma->vm_end = address;
/* Overwrite old entry in mtree. */
vma_iter_store(&vmi, vma);
anon_vma_interval_tree_post_update_vma(vma);
spin_unlock(&mm->page_table_lock);
perf_event_mmap(vma);
}
}
}
anon_vma_unlock_write(vma->anon_vma);
vma_iter_free(&vmi);
validate_mm(mm);
return error;
}
#endif /* CONFIG_STACK_GROWSUP */
/*
* vma is the first one with address < vma->vm_start. Have to extend vma.
* mmap_lock held for writing.
*/
int expand_downwards(struct vm_area_struct *vma, unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *prev;
int error = 0;
VMA_ITERATOR(vmi, mm, vma->vm_start);
if (!(vma->vm_flags & VM_GROWSDOWN))
return -EFAULT;
address &= PAGE_MASK;
if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
return -EPERM;
/* Enforce stack_guard_gap */
prev = vma_prev(&vmi);
/* Check that both stack segments have the same anon_vma? */
if (prev) {
if (!(prev->vm_flags & VM_GROWSDOWN) &&
vma_is_accessible(prev) &&
(address - prev->vm_end < stack_guard_gap))
return -ENOMEM;
}
if (prev)
vma_iter_next_range_limit(&vmi, vma->vm_start);
vma_iter_config(&vmi, address, vma->vm_end);
if (vma_iter_prealloc(&vmi, vma))
return -ENOMEM;
/* We must make sure the anon_vma is allocated. */
if (unlikely(anon_vma_prepare(vma))) {
vma_iter_free(&vmi);
return -ENOMEM;
}
/* Lock the VMA before expanding to prevent concurrent page faults */
vma_start_write(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_lock in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
anon_vma_lock_write(vma->anon_vma);
/* Somebody else might have raced and expanded it already */
if (address < vma->vm_start) {
unsigned long size, grow;
size = vma->vm_end - address;
grow = (vma->vm_start - address) >> PAGE_SHIFT;
error = -ENOMEM;
if (grow <= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
/*
* We only hold a shared mmap_lock lock here, so
* we need to protect against concurrent vma
* expansions. anon_vma_lock_write() doesn't
* help here, as we don't guarantee that all
* growable vmas in a mm share the same root
* anon vma. So, we reuse mm->page_table_lock
* to guard against concurrent vma expansions.
*/
spin_lock(&mm->page_table_lock);
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, grow);
anon_vma_interval_tree_pre_update_vma(vma);
vma->vm_start = address;
vma->vm_pgoff -= grow;
/* Overwrite old entry in mtree. */
vma_iter_store(&vmi, vma);
anon_vma_interval_tree_post_update_vma(vma);
spin_unlock(&mm->page_table_lock);
perf_event_mmap(vma);
}
}
}
anon_vma_unlock_write(vma->anon_vma);
vma_iter_free(&vmi);
validate_mm(mm);
return error;
}
/* enforced gap between the expanding stack and other mappings. */
unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
static int __init cmdline_parse_stack_guard_gap(char *p)
{
unsigned long val;
char *endptr;
val = simple_strtoul(p, &endptr, 10);
if (!*endptr)
stack_guard_gap = val << PAGE_SHIFT;
return 1;
}
__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
#ifdef CONFIG_STACK_GROWSUP
int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
{
return expand_upwards(vma, address);
}
struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
addr &= PAGE_MASK;
vma = find_vma_prev(mm, addr, &prev);
if (vma && (vma->vm_start <= addr))
return vma;
if (!prev)
return NULL;
if (expand_stack_locked(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED)
populate_vma_page_range(prev, addr, prev->vm_end, NULL);
return prev;
}
#else
int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
{
return expand_downwards(vma, address);
}
struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma;
unsigned long start;
addr &= PAGE_MASK;
vma = find_vma(mm, addr);
if (!vma)
return NULL;
if (vma->vm_start <= addr)
return vma;
start = vma->vm_start;
if (expand_stack_locked(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED)
populate_vma_page_range(vma, addr, start, NULL);
return vma;
}
#endif
#if defined(CONFIG_STACK_GROWSUP)
#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
#define vma_expand_down(vma, addr) (-EFAULT)
#else
#define vma_expand_up(vma,addr) (-EFAULT)
#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
#endif
/*
* expand_stack(): legacy interface for page faulting. Don't use unless
* you have to.
*
* This is called with the mm locked for reading, drops the lock, takes
* the lock for writing, tries to look up a vma again, expands it if
* necessary, and downgrades the lock to reading again.
*
* If no vma is found or it can't be expanded, it returns NULL and has
* dropped the lock.
*/
struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
mmap_read_unlock(mm);
if (mmap_write_lock_killable(mm))
return NULL;
vma = find_vma_prev(mm, addr, &prev);
if (vma && vma->vm_start <= addr)
goto success;
if (prev && !vma_expand_up(prev, addr)) {
vma = prev;
goto success;
}
if (vma && !vma_expand_down(vma, addr))
goto success;
mmap_write_unlock(mm);
return NULL;
success:
mmap_write_downgrade(mm);
return vma;
}
/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
* @mm: The mm_struct
* @start: The start address to munmap
* @len: The length to be munmapped.
* @uf: The userfaultfd list_head
*
* Return: 0 on success, error otherwise.
*/
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
struct list_head *uf)
{
VMA_ITERATOR(vmi, mm, start);
return do_vmi_munmap(&vmi, mm, start, len, uf, false);
}
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
struct list_head *uf)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
pgoff_t pglen = PHYS_PFN(len);
struct vm_area_struct *merge;
unsigned long charged = 0;
struct vma_munmap_struct vms;
struct ma_state mas_detach;
struct maple_tree mt_detach;
unsigned long end = addr + len;
bool writable_file_mapping = false;
int error;
VMA_ITERATOR(vmi, mm, addr);
VMG_STATE(vmg, mm, &vmi, addr, end, vm_flags, pgoff);
vmg.file = file;
/* Find the first overlapping VMA */
vma = vma_find(&vmi, end);
init_vma_munmap(&vms, &vmi, vma, addr, end, uf, /* unlock = */ false);
if (vma) {
mt_init_flags(&mt_detach, vmi.mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
mt_on_stack(mt_detach);
mas_init(&mas_detach, &mt_detach, /* addr = */ 0);
/* Prepare to unmap any existing mapping in the area */
error = vms_gather_munmap_vmas(&vms, &mas_detach);
if (error)
goto gather_failed;
vmg.next = vms.next;
vmg.prev = vms.prev;
vma = NULL;
} else {
vmg.next = vma_iter_next_rewind(&vmi, &vmg.prev);
}
/* Check against address space limit. */
if (!may_expand_vm(mm, vm_flags, pglen - vms.nr_pages)) {
error = -ENOMEM;
goto abort_munmap;
}
/*
* Private writable mapping: check memory availability
*/
if (accountable_mapping(file, vm_flags)) {
charged = pglen;
charged -= vms.nr_accounted;
if (charged) {
error = security_vm_enough_memory_mm(mm, charged);
if (error)
goto abort_munmap;
}
vms.nr_accounted = 0;
vm_flags |= VM_ACCOUNT;
vmg.flags = vm_flags;
}
vma = vma_merge_new_range(&vmg);
if (vma)
goto expanded;
/*
* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
vma = vm_area_alloc(mm);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
vma_iter_config(&vmi, addr, end);
vma_set_range(vma, addr, end, pgoff);
vm_flags_init(vma, vm_flags);
vma->vm_page_prot = vm_get_page_prot(vm_flags);
if (file) {
vma->vm_file = get_file(file);
/*
* call_mmap() may map PTE, so ensure there are no existing PTEs
* and call the vm_ops close function if one exists.
*/
vms_clean_up_area(&vms, &mas_detach);
error = call_mmap(file, vma);
if (error)
goto unmap_and_free_vma;
if (vma_is_shared_maywrite(vma)) {
error = mapping_map_writable(file->f_mapping);
if (error)
goto close_and_free_vma;
writable_file_mapping = true;
}
/*
* Expansion is handled above, merging is handled below.
* Drivers should not alter the address of the VMA.
*/
if (WARN_ON((addr != vma->vm_start))) {
error = -EINVAL;
goto close_and_free_vma;
}
vma_iter_config(&vmi, addr, end);
/*
* If vm_flags changed after call_mmap(), we should try merge
* vma again as we may succeed this time.
*/
if (unlikely(vm_flags != vma->vm_flags && vmg.prev)) {
vmg.flags = vma->vm_flags;
/* If this fails, state is reset ready for a reattempt. */
merge = vma_merge_new_range(&vmg);
if (merge) {
/*
* ->mmap() can change vma->vm_file and fput
* the original file. So fput the vma->vm_file
* here or we would add an extra fput for file
* and cause general protection fault
* ultimately.
*/
fput(vma->vm_file);
vm_area_free(vma);
vma = merge;
/* Update vm_flags to pick up the change. */
vm_flags = vma->vm_flags;
goto unmap_writable;
}
vma_iter_config(&vmi, addr, end);
}
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
} else {
vma_set_anonymous(vma);
}
if (map_deny_write_exec(vma, vma->vm_flags)) {
error = -EACCES;
goto close_and_free_vma;
}
/* Allow architectures to sanity-check the vm_flags */
if (!arch_validate_flags(vma->vm_flags)) {
error = -EINVAL;
goto close_and_free_vma;
}
if (vma_iter_prealloc(&vmi, vma)) {
error = -ENOMEM;
goto close_and_free_vma;
}
/* Lock the VMA since it is modified after insertion into VMA tree */
vma_start_write(vma);
vma_iter_store(&vmi, vma);
mm->map_count++;
vma_link_file(vma);
/*
* vma_merge_new_range() calls khugepaged_enter_vma() too, the below
* call covers the non-merge case.
*/
khugepaged_enter_vma(vma, vma->vm_flags);
/* Once vma denies write, undo our temporary denial count */
unmap_writable:
if (writable_file_mapping)
mapping_unmap_writable(file->f_mapping);
file = vma->vm_file;
ksm_add_vma(vma);
expanded:
perf_event_mmap(vma);
/* Unmap any existing mapping in the area */
vms_complete_munmap_vmas(&vms, &mas_detach);
vm_stat_account(mm, vm_flags, pglen);
if (vm_flags & VM_LOCKED) {
if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm))
vm_flags_clear(vma, VM_LOCKED_MASK);
else
mm->locked_vm += pglen;
}
if (file)
uprobe_mmap(vma);
/*
* New (or expanded) vma always get soft dirty status.
* Otherwise user-space soft-dirty page tracker won't
* be able to distinguish situation when vma area unmapped,
* then new mapped in-place (which must be aimed as
* a completely new data area).
*/
vm_flags_set(vma, VM_SOFTDIRTY);
vma_set_page_prot(vma);
validate_mm(mm);
return addr;
close_and_free_vma:
if (file && !vms.closed_vm_ops && vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (file || vma->vm_file) {
unmap_and_free_vma:
fput(vma->vm_file);
vma->vm_file = NULL;
vma_iter_set(&vmi, vma->vm_end);
/* Undo any partial mapping done by a device driver. */
unmap_region(&vmi.mas, vma, vmg.prev, vmg.next);
}
if (writable_file_mapping)
mapping_unmap_writable(file->f_mapping);
free_vma:
vm_area_free(vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
abort_munmap:
vms_abort_munmap_vmas(&vms, &mas_detach);
gather_failed:
validate_mm(mm);
return error;
}
static int __vm_munmap(unsigned long start, size_t len, bool unlock)
{
int ret;
struct mm_struct *mm = current->mm;
LIST_HEAD(uf);
VMA_ITERATOR(vmi, mm, start);
if (mmap_write_lock_killable(mm))
return -EINTR;
ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
if (ret || !unlock)
mmap_write_unlock(mm);
userfaultfd_unmap_complete(mm, &uf);
return ret;
}
int vm_munmap(unsigned long start, size_t len)
{
return __vm_munmap(start, len, false);
}
EXPORT_SYMBOL(vm_munmap);
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
{
addr = untagged_addr(addr);
return __vm_munmap(addr, len, true);
}
/*
* Emulation of deprecated remap_file_pages() syscall.
*/
SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long populate = 0;
unsigned long ret = -EINVAL;
struct file *file;
pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
current->comm, current->pid);
if (prot)
return ret;
start = start & PAGE_MASK;
size = size & PAGE_MASK;
if (start + size <= start)
return ret;
/* Does pgoff wrap? */
if (pgoff + (size >> PAGE_SHIFT) < pgoff)
return ret;
if (mmap_write_lock_killable(mm))
return -EINTR;
vma = vma_lookup(mm, start);
if (!vma || !(vma->vm_flags & VM_SHARED))
goto out;
if (start + size > vma->vm_end) {
VMA_ITERATOR(vmi, mm, vma->vm_end);
struct vm_area_struct *next, *prev = vma;
for_each_vma_range(vmi, next, start + size) {
/* hole between vmas ? */
if (next->vm_start != prev->vm_end)
goto out;
if (next->vm_file != vma->vm_file)
goto out;
if (next->vm_flags != vma->vm_flags)
goto out;
if (start + size <= next->vm_end)
break;
prev = next;
}
if (!next)
goto out;
}
prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
flags &= MAP_NONBLOCK;
flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
if (vma->vm_flags & VM_LOCKED)
flags |= MAP_LOCKED;
file = get_file(vma->vm_file);
ret = security_mmap_file(vma->vm_file, prot, flags);
if (ret)
goto out_fput;
ret = do_mmap(vma->vm_file, start, size,
prot, flags, 0, pgoff, &populate, NULL);
out_fput:
fput(file);
out:
mmap_write_unlock(mm);
if (populate)
mm_populate(ret, populate);
if (!IS_ERR_VALUE(ret))
ret = 0;
return ret;
}
/*
* do_brk_flags() - Increase the brk vma if the flags match.
* @vmi: The vma iterator
* @addr: The start address
* @len: The length of the increase
* @vma: The vma,
* @flags: The VMA Flags
*
* Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
* do not match then create a new anonymous VMA. Eventually we may be able to
* do some brk-specific accounting here.
*/
static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long addr, unsigned long len, unsigned long flags)
{
struct mm_struct *mm = current->mm;
/*
* Check against address space limits by the changed size
* Note: This happens *after* clearing old mappings in some code paths.
*/
flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
return -ENOMEM;
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
/*
* Expand the existing vma if possible; Note that singular lists do not
* occur after forking, so the expand will only happen on new VMAs.
*/
if (vma && vma->vm_end == addr) {
VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
vmg.prev = vma;
vma_iter_next_range(vmi);
if (vma_merge_new_range(&vmg))
goto out;
else if (vmg_nomem(&vmg))
goto unacct_fail;
}
if (vma)
vma_iter_next_range(vmi);
/* create a vma struct for an anonymous mapping */
vma = vm_area_alloc(mm);
if (!vma)
goto unacct_fail;
vma_set_anonymous(vma);
vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
vm_flags_init(vma, flags);
vma->vm_page_prot = vm_get_page_prot(flags);
vma_start_write(vma);
if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
goto mas_store_fail;
mm->map_count++;
validate_mm(mm);
ksm_add_vma(vma);
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
mm->data_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED)
mm->locked_vm += (len >> PAGE_SHIFT);
vm_flags_set(vma, VM_SOFTDIRTY);
return 0;
mas_store_fail:
vm_area_free(vma);
unacct_fail:
vm_unacct_memory(len >> PAGE_SHIFT);
return -ENOMEM;
}
int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
unsigned long len;
int ret;
bool populate;
LIST_HEAD(uf);
VMA_ITERATOR(vmi, mm, addr);
len = PAGE_ALIGN(request);
if (len < request)
return -ENOMEM;
if (!len)
return 0;
/* Until we need other flags, refuse anything except VM_EXEC. */
if ((flags & (~VM_EXEC)) != 0)
return -EINVAL;
if (mmap_write_lock_killable(mm))
return -EINTR;
ret = check_brk_limits(addr, len);
if (ret)
goto limits_failed;
ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
if (ret)
goto munmap_failed;
vma = vma_prev(&vmi);
ret = do_brk_flags(&vmi, vma, addr, len, flags);
populate = ((mm->def_flags & VM_LOCKED) != 0);
mmap_write_unlock(mm);
userfaultfd_unmap_complete(mm, &uf);
if (populate && !ret)
mm_populate(addr, len);
return ret;
munmap_failed:
limits_failed:
mmap_write_unlock(mm);
return ret;
}
EXPORT_SYMBOL(vm_brk_flags);
/* Release all mmaps. */
void exit_mmap(struct mm_struct *mm)
{
struct mmu_gather tlb;
struct vm_area_struct *vma;
unsigned long nr_accounted = 0;
VMA_ITERATOR(vmi, mm, 0);
int count = 0;
/* mm's last user has gone, and its about to be pulled down */
mmu_notifier_release(mm);
mmap_read_lock(mm);
arch_exit_mmap(mm);
vma = vma_next(&vmi);
if (!vma || unlikely(xa_is_zero(vma))) {
/* Can happen if dup_mmap() received an OOM */
mmap_read_unlock(mm);
mmap_write_lock(mm);
goto destroy;
}
lru_add_drain();
flush_cache_mm(mm);
tlb_gather_mmu_fullmm(&tlb, mm);
/* update_hiwater_rss(mm) here? but nobody should be looking */
/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
mmap_read_unlock(mm);
/*
* Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
* because the memory has been already freed.
*/
set_bit(MMF_OOM_SKIP, &mm->flags);
mmap_write_lock(mm);
mt_clear_in_rcu(&mm->mm_mt);
vma_iter_set(&vmi, vma->vm_end);
free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
USER_PGTABLES_CEILING, true);
tlb_finish_mmu(&tlb);
/*
* Walk the list again, actually closing and freeing it, with preemption
* enabled, without holding any MM locks besides the unreachable
* mmap_write_lock.
*/
vma_iter_set(&vmi, vma->vm_end);
do {
if (vma->vm_flags & VM_ACCOUNT)
nr_accounted += vma_pages(vma);
remove_vma(vma, /* unreachable = */ true, /* closed = */ false);
count++;
cond_resched();
vma = vma_next(&vmi);
} while (vma && likely(!xa_is_zero(vma)));
BUG_ON(count != mm->map_count);
trace_exit_mmap(mm);
destroy:
__mt_destroy(&mm->mm_mt);
mmap_write_unlock(mm);
vm_unacct_memory(nr_accounted);
}
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap tree. If vm_file is non-NULL
* then i_mmap_rwsem is taken here.
*/
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
unsigned long charged = vma_pages(vma);
if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
return -ENOMEM;
if ((vma->vm_flags & VM_ACCOUNT) &&
security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
/*
* The vm_pgoff of a purely anonymous vma should be irrelevant
* until its first write fault, when page's anon_vma and index
* are set. But now set the vm_pgoff it will almost certainly
* end up with (unless mremap moves it elsewhere before that
* first wfault), so /proc/pid/maps tells a consistent story.
*
* By setting it to reflect the virtual start address of the
* vma, merges and splits can happen in a seamless way, just
* using the existing file pgoff checks and manipulations.
* Similarly in do_mmap and in do_brk_flags.
*/
if (vma_is_anonymous(vma)) {
BUG_ON(vma->anon_vma);
vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
}
if (vma_link(mm, vma)) {
if (vma->vm_flags & VM_ACCOUNT)
vm_unacct_memory(charged);
return -ENOMEM;
}
return 0;
}
/*
* Return true if the calling process may expand its vm space by the passed
* number of pages
*/
bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
{
if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
return false;
if (is_data_mapping(flags) &&
mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
/* Workaround for Valgrind */
if (rlimit(RLIMIT_DATA) == 0 &&
mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
return true;
pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
current->comm, current->pid,
(mm->data_vm + npages) << PAGE_SHIFT,
rlimit(RLIMIT_DATA),
ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
if (!ignore_rlimit_data)
return false;
}
return true;
}
void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
{
WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
if (is_exec_mapping(flags))
mm->exec_vm += npages;
else if (is_stack_mapping(flags))
mm->stack_vm += npages;
else if (is_data_mapping(flags))
mm->data_vm += npages;
}
static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
/*
* Close hook, called for unmap() and on the old vma for mremap().
*
* Having a close hook prevents vma merging regardless of flags.
*/
static void special_mapping_close(struct vm_area_struct *vma)
{
const struct vm_special_mapping *sm = vma->vm_private_data;
if (sm->close)
sm->close(sm, vma);
}
static const char *special_mapping_name(struct vm_area_struct *vma)
{
return ((struct vm_special_mapping *)vma->vm_private_data)->name;
}
static int special_mapping_mremap(struct vm_area_struct *new_vma)
{
struct vm_special_mapping *sm = new_vma->vm_private_data;
if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
return -EFAULT;
if (sm->mremap)
return sm->mremap(sm, new_vma);
return 0;
}
static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
{
/*
* Forbid splitting special mappings - kernel has expectations over
* the number of pages in mapping. Together with VM_DONTEXPAND
* the size of vma should stay the same over the special mapping's
* lifetime.
*/
return -EINVAL;
}
static const struct vm_operations_struct special_mapping_vmops = {
.close = special_mapping_close,
.fault = special_mapping_fault,
.mremap = special_mapping_mremap,
.name = special_mapping_name,
/* vDSO code relies that VVAR can't be accessed remotely */
.access = NULL,
.may_split = special_mapping_split,
};
static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
pgoff_t pgoff;
struct page **pages;
struct vm_special_mapping *sm = vma->vm_private_data;
if (sm->fault)
return sm->fault(sm, vmf->vma, vmf);
pages = sm->pages;
for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
pgoff--;
if (*pages) {
struct page *page = *pages;
get_page(page);
vmf->page = page;
return 0;
}
return VM_FAULT_SIGBUS;
}
static struct vm_area_struct *__install_special_mapping(
struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, void *priv,
const struct vm_operations_struct *ops)
{
int ret;
struct vm_area_struct *vma;
vma = vm_area_alloc(mm);
if (unlikely(vma == NULL))
return ERR_PTR(-ENOMEM);
vma_set_range(vma, addr, addr + len, 0);
vm_flags_init(vma, (vm_flags | mm->def_flags |
VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
vma->vm_ops = ops;
vma->vm_private_data = priv;
ret = insert_vm_struct(mm, vma);
if (ret)
goto out;
vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
perf_event_mmap(vma);
return vma;
out:
vm_area_free(vma);
return ERR_PTR(ret);
}
bool vma_is_special_mapping(const struct vm_area_struct *vma,
const struct vm_special_mapping *sm)
{
return vma->vm_private_data == sm &&
vma->vm_ops == &special_mapping_vmops;
}
/*
* Called with mm->mmap_lock held for writing.
* Insert a new vma covering the given region, with the given flags.
* Its pages are supplied by the given array of struct page *.
* The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
* The region past the last page supplied will always produce SIGBUS.
* The array pointer and the pages it points to are assumed to stay alive
* for as long as this mapping might exist.
*/
struct vm_area_struct *_install_special_mapping(
struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, const struct vm_special_mapping *spec)
{
return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
&special_mapping_vmops);
}
/*
* initialise the percpu counter for VM
*/
void __init mmap_init(void)
{
int ret;
ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
VM_BUG_ON(ret);
}
/*
* Initialise sysctl_user_reserve_kbytes.
*
* This is intended to prevent a user from starting a single memory hogging
* process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
* mode.
*
* The default value is min(3% of free memory, 128MB)
* 128MB is enough to recover with sshd/login, bash, and top/kill.
*/
static int init_user_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
return 0;
}
subsys_initcall(init_user_reserve);
/*
* Initialise sysctl_admin_reserve_kbytes.
*
* The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
* to log in and kill a memory hogging process.
*
* Systems with more than 256MB will reserve 8MB, enough to recover
* with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
* only reserve 3% of free pages by default.
*/
static int init_admin_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
return 0;
}
subsys_initcall(init_admin_reserve);
/*
* Reinititalise user and admin reserves if memory is added or removed.
*
* The default user reserve max is 128MB, and the default max for the
* admin reserve is 8MB. These are usually, but not always, enough to
* enable recovery from a memory hogging process using login/sshd, a shell,
* and tools like top. It may make sense to increase or even disable the
* reserve depending on the existence of swap or variations in the recovery
* tools. So, the admin may have changed them.
*
* If memory is added and the reserves have been eliminated or increased above
* the default max, then we'll trust the admin.
*
* If memory is removed and there isn't enough free memory, then we
* need to reset the reserves.
*
* Otherwise keep the reserve set by the admin.
*/
static int reserve_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
unsigned long tmp, free_kbytes;
switch (action) {
case MEM_ONLINE:
/* Default max is 128MB. Leave alone if modified by operator. */
tmp = sysctl_user_reserve_kbytes;
if (tmp > 0 && tmp < SZ_128K)
init_user_reserve();
/* Default max is 8MB. Leave alone if modified by operator. */
tmp = sysctl_admin_reserve_kbytes;
if (tmp > 0 && tmp < SZ_8K)
init_admin_reserve();
break;
case MEM_OFFLINE:
free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
if (sysctl_user_reserve_kbytes > free_kbytes) {
init_user_reserve();
pr_info("vm.user_reserve_kbytes reset to %lu\n",
sysctl_user_reserve_kbytes);
}
if (sysctl_admin_reserve_kbytes > free_kbytes) {
init_admin_reserve();
pr_info("vm.admin_reserve_kbytes reset to %lu\n",
sysctl_admin_reserve_kbytes);
}
break;
default:
break;
}
return NOTIFY_OK;
}
static int __meminit init_reserve_notifier(void)
{
if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
pr_err("Failed registering memory add/remove notifier for admin reserve\n");
return 0;
}
subsys_initcall(init_reserve_notifier);
/*
* Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
* this VMA and its relocated range, which will now reside at [vma->vm_start -
* shift, vma->vm_end - shift).
*
* This function is almost certainly NOT what you want for anything other than
* early executable temporary stack relocation.
*/
int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
{
/*
* The process proceeds as follows:
*
* 1) Use shift to calculate the new vma endpoints.
* 2) Extend vma to cover both the old and new ranges. This ensures the
* arguments passed to subsequent functions are consistent.
* 3) Move vma's page tables to the new range.
* 4) Free up any cleared pgd range.
* 5) Shrink the vma to cover only the new range.
*/
struct mm_struct *mm = vma->vm_mm;
unsigned long old_start = vma->vm_start;
unsigned long old_end = vma->vm_end;
unsigned long length = old_end - old_start;
unsigned long new_start = old_start - shift;
unsigned long new_end = old_end - shift;
VMA_ITERATOR(vmi, mm, new_start);
VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
struct vm_area_struct *next;
struct mmu_gather tlb;
BUG_ON(new_start > new_end);
/*
* ensure there are no vmas between where we want to go
* and where we are
*/
if (vma != vma_next(&vmi))
return -EFAULT;
vma_iter_prev_range(&vmi);
/*
* cover the whole range: [new_start, old_end)
*/
vmg.vma = vma;
if (vma_expand(&vmg))
return -ENOMEM;
/*
* move the page tables downwards, on failure we rely on
* process cleanup to remove whatever mess we made.
*/
if (length != move_page_tables(vma, old_start,
vma, new_start, length, false, true))
return -ENOMEM;
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
next = vma_next(&vmi);
if (new_end > old_start) {
/*
* when the old and new regions overlap clear from new_end.
*/
free_pgd_range(&tlb, new_end, old_end, new_end,
next ? next->vm_start : USER_PGTABLES_CEILING);
} else {
/*
* otherwise, clean from old_start; this is done to not touch
* the address space in [new_end, old_start) some architectures
* have constraints on va-space that make this illegal (IA64) -
* for the others its just a little faster.
*/
free_pgd_range(&tlb, old_start, old_end, new_end,
next ? next->vm_start : USER_PGTABLES_CEILING);
}
tlb_finish_mmu(&tlb);
vma_prev(&vmi);
/* Shrink the vma to just the new range */
return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
}